

Univerfal and Perpetual,

Fitted for all Countries and Capacities?

containing

Perpetual T'ABEABS, fitted to the Old and New Scile; fhewing the Moveable and Fixed Feafts, the Rifing and Setting of the Sun and Moon; and how to find the Moon's Place at any time propofed: Alfo the Changes and Eclipfes calculated for Thirty Years ; with Rules to find them for ever, according to the middle Motion of the Sun and Moon.

The Magnitudes and Diflanc
A N D
A Brief Difcourfe of all kinds of Meteors, or Appearances in the Heavens ; Natural Prognofticks of the Weather: With a General View of the Four Parts of

> To the Whole is Added,

A Short Defcription of TIME, and how it ought to
be Redeem'd.

By DUNCAN CAMPBEEEO

LONDON

Printed, and fold by the New Church in the Strand, i ic o ov, Over-againf and for the Author, at the Higblander al in the loultry: Charing-Crofs.
MDCCXXXIV

To the Honourable

Sir JAMES CAMPBELL,

of Ardkinlefs, Baronet ; And Member of the Honourable Honje of Commons.

Honoured Sir,

Nane dedicate the Products of their Studies, to one whofe Name is dear to themfelves, Venerable to the Publick; or one who well underA 2

The Dedication.

flands the Subject on which they write, that thro' the Approbation of a Learned Patron their Wurks may be the more acceptable to the World: I, likewife (having all thefe Views complicated in one) with the greateft fubmifion recommend this Telefcope of Tims, Sir, to your Patronage and Protection. And tho' this Book was of lefs general ufe than it really is, I'm thoroughly. perfwaded, Your Name in its Front, is fuch an Ornament as will be fufficient to recommend it to the World ; and efpecially to thofe who have the Honour, Sir, of being acquainced with you.

Thus having arriv'd at the Height of my Ambition (an Opportunity of thewing my Gratitude for Favours already received) I fubfcribe mylelf, with great Pleafure, and profound Humility,

$$
S I R,
$$

Your Howour's Moft Dutiful,
Mof Obedient, and
Moft Obliged Humble Servant,

Duncan Campbell.

> THE

Reader,

IAcknowledge my felf much oblig'd to you for fixing your Eye to this Telefrope: I hope, the Profpect it produces, will anfwer your Expectation ; for it will reprefent to your View, Things Vifible and Invifible! At the Diftance of Milions of Miles, and Thoufands of Years! It will plainly foew you the dark Receffes of Time and Diftances ; which is more than any other Telefcope pretends to. You cannot furnifh your Family with an Infrument that will be of more daily and yearly ufe to your felf and Pofterity than this: For we muft allow, that the true Knowledge of Time is indifpenfibly neceffary for Mostals, whofe Lives are nothing elle but uncertain Members of that precarious Being. And this Knowledge is attained to, by the Motion and Revolutions of the Celeftial Bodies; efpecially, by that of the Sun and Moon, and of the Earth it felf. [See Gen. I, and 14.] Therefore I recommend this Telefcope to thofe who are fhort-fighted in Aftronomy: It will give them a clear View of thefe Motions, on which Time depends; and confequently of Tirne it felf.

The meaneft Reader need not defpair of undemtanding the obfcureft Paffage in this Book, if he does but carefully and patiently perufe it once or twice over: For all the Tables are fo fully explained, and fo many Examples given, that a School-Boy, who is entirely a Stranger to Aftronomical Books, may readily under-

The PREFACE.

ftand it. But it is a great fault in fome People, to hurry over the Explanations of fuch Books as this, without ever turning to the Tables, to which they refer ; and confequently they lofe the Pleafure and Profit of comprehending what they read

If they look in a Book, and happen to meet with a Paragraph that is not wrote in their Stile, they are apt to accule the Author of Obfcurity, or themfelves of want of Underftanding; or (which is worfe) blame their Parents for not giving them a liberal Education.

Therefore, I advile the Learner to read one Example over, and then look in the Table to which that directs, and try if it anfwers: If it does not, he muft ponder it over, till he brings it to bear.

But when once you make the Tables familiar to you, you may proceed with Eafe and Pleafure, without the Trouble of reading the Explanations.

Firft, Learn the Ufe of thefe Tables that are moft neceffary, namely, thofe hhewing the Day of the Month, and Day of the Week, the Moveable Feafts, the Rifing and Setting of the Sun and Moon, the Changes and Eclipfes, the Tyde-Table, E's.

Reader, Yours, \& c.

> D. C.

The CONTENTS.

THE Explanation of the two fir t Tables, Page 1 and 2 Two Tables Shewing the Day of the Month, and Day of the Weck in both Accounts,
P. 4 and 5

The Explanation of the following Table
p. 6

A Table of the Cycle of the Sun and Dom. Letter,
p. 7

A Table reducing the Julian to the Gregorian $\mathrm{Y}_{\text {ear }}$,
p. 8 A Table of the Gregorian Dom. Letter, and its Explanation, P. 9 and 10 Another Table frewing the Day of the Month, and Day of tbe Week in both Accounts,
p. II and 12

A Table frewing the Golden Number,
p. 13

The Julian, and Gregorian Eatters for 100 Kears, p. 14 and 15 A Table reducing the Julian Day of the Month to that of the Gregorian,
p. 16

A Table Sewing the moveable Fenfts in both Accourts, and its Explanation, p. 18 and 19 Two Tables hewing the Julian and Gregorian Numb. of Direction, and Explanation, p. 20, 21 and 22 The Roman Epact and Law-Terms, p. 23 and 24 The fixed Feafts and remarksble Days,
p. 25 and 26 The Sun's Declination, Rifing and Setting explain'd, p. 27 A Table of the Sun's Declination, p. 28 and 29 The Sun's Rifing and Seiting, at London, EJc. p. 30,31 and 32 The Rijng and Setting at Edinburgh, Ejc. p. 33, 34 and 35 The Sun's Rifing and Setting at 30 Noted Places, $0.37,38,39$ and 40 Sun's Place, Break of Day, Twilight, Equation of time explain'd, p. 41 Of the Break of Day, and Tmilight at London and Edinburgh, p. 44 and 45

A Table of ibe Equation of Time all the Year, p. 46 and 47 Of the Moon's Southing, Shining, Rifing and Setting, p. 48 and 49 Of the Moon's Place, and bow to find ber Place at any Time, from
p. 50 -to 53 Table of Latitudes, and Differences of Meridians, p. 54

The CONTENTS.

The Explanation of the Mon's Chanes,
p. 55

The feveral Sorts of Ec'ibjes, and their Caufes,
p. 56

The Explanation of the Eclipfes,
p. 61

The Cbanges and Eclipfes for 30 Xears, from
The invifiule Ecliples, where Vifible, from
The feveral Faces of the Moin repefented,
p. 63, to $\% 7$
p. 79 to 92
p. 93

The Explanation of the Moon's Pbafes,
p. 34 and 95

A Type of the Moon's. Ecliples,
p. 96

Of the Harvil Moon,
p. 97

A Type of the Sun's Ecliple,
p. 98

The Diftances and Marnitudes of the Planets,
p. 99

The true Syfem of the Planets Explaind, from p. 100 to 104
Rules to find the common Notes of the $\gamma_{e a r}$, Eclipfes, \&xc. from
p. 104 to 112
of Years, Montbs and Days, from
p. 113 to 122

A Brief Difcourfe of all kinds of Metsors,
p. 123

Viz. Clouds, Rain, Snow, Froft, Hail, Dew,
p. 1.24

Heat, Culd, Rainbow, Thunder, Llgbtnings, p. 125 and 126 Earthquakes, \&cc. Air, Wind, Aurora Borealis, Ignis Fatuus, \&c. Sbooting Stars,
p. 127 to 130

Natural Prognoficks of the Weather, p. 130131 and 132
Remarkable Paffages of Time,
A general Vie of the World, from
p. 133134 and 135

A Table of the Length of the longef Day, \&c.
p. 136 to 139
p. 140

A Tyde Table, explain'd, from
p. 141 to 144

A Table of daily and Yearly Expence,
p. 145 and 146

A Table of the Kings of Scorland and England, from p. 144
$t 0150$
A Defcription of Time, from
p. 152 to the End.

2"

The Explanation of the Twe following Tables.

I
N the firft Table, Pą̨e 4. look for the Year on the Left Hand, and in that one Line to the Right, and under the Nonths, you have your Delire.
Example 1. I would knon, whar Day of the Week begins every Month in the Year 1734 ? Having found the Year in the firft Column, I find againtt is under fan. Tuefayy, under Feb. Friday, March and Nov. Friday; and under stprit and fuly, Monday ; May, Wednefday; Fune, Saturday; Aul. Thurfday; Qacb. Tuefday; Septemb. and Decemb. Sunday.

Example 2. The Year 18 ;2. From the Year, guide your Eye to the Right; there you find L. lignifying Leap.Year: And againitt L. 21, the Cycle of the Sua; and in the lame Line, torward, you find the firt day of every Month in the Year; for fan Friday. Feb. Monday, \&c.

Example 3. Let it be requird to know, what day of the Week begua every Month in the Year 1700? To find this, I mutt look for the Cycle of the Sun in the Table, Page 7 ; which Ifind to be 1, for the faid Year. Now, I feek for i in this Table, in che Column, titled Cycle of the Sua; and having found it, I find againtt it, for $\mathfrak{F a n}$. Monday, Fob. Thurfday, and fo thro'. Here you fee, you have nothing to do, bur th find the Year, or the Cycle of the Sun for any Year propos'd, in the fide, the Monih at tie top; and in the Angle, or Place of meeting, you have the Day that the Monta begins on.

Example 4. The Year 1904, Cycle of the Sun 9. I enrer the Table with that Number: To the Right I find Thurjlay, Sunday, Monday, \&c.

> The Explanation of the fecond Table.

THis Table is divided into feven fquares, or fmall Tables for the 7 Days of the Week; and each Cquare begins with a red Day,or fint day of the Month. Example 1. I delire to know, what day of the Week, any day of F_{6}, falls in the Year 1934 . By the preceding Table I find. Tuefay is the irft day or ${ }^{\text {a }}$ an. I look for Tuefday in this Table, and I fee if

2 The Explanation of the two following Tables.

 begins the third qquare on the Left Hand; and againft it, 1.8-15-22.29, all Tuefdays; againk Wednefday, 2-9-16.23-30, which are all the Wednefdays in Fanuary; and again, I would know, what day of the Month the third Friday in Fanuary is? I feek for Friday in that fquare, and againft it I find 4-11-1825, and 18 anlwers che Queltion, 3 Friday. And 1 would know, what day of the Weck is the 27 th day? I look for 27 in the fquare; againft ir, on the Left, I find Sunday; and all the Numbers in that Line are Sundays. If it be required, What day of the Week begins the Gregorim or Roman Month, you mult in this Cale lee what Day of the Week is the $4 \cdot h$ of the fulian or Britifb Month; and that Day begins the Roman Month, t.ll the Year 1800; from 1800 till 1900, the 3d; from 1900 till 2100 , the $2 d$; from 2100 till 2200 , the fame Day of the Week that hegins our Month, begins theirs allo: For the firt of ours will be then equal to the 15 th of theirs (the fame Lay of the Week, I and 15.)
Of the Roman Day of the Month.

BY the foreguing Reles, find what day of the Week is the 4th of the Britifh Month, and that is the 1 ft of the Roman Month; as 1 have hinted before. For Example; the 4 th day of fan. in the Year 1934, is Friday: Now I feek for the quare in the $2 d$ Table, thar begins with Friday; and having found it, againt it to the Right Hand, I have all the Fridays in the Month; in the lecond Line, all the Saturdays; in the third, all the Sundays, and fo on. Obferve, that in each of thefe fquares you have from 1 to 31 , the highet Number of Days in any Month: fo that you are to mind the Number of Days in the Month you rection in; you'll find every Month's Number of Days fet down along with it in the firlt Table. Note, when thele Years are expir'd, that the Reader may cur them off.

Mind the Explanation of each Table,
To underftand them, that will make you able. They're plain and obvious to the Learner's View, Who my Directions willingly pur 1 .

A Table Joweing the Firf Day of the Month for ever.

Sunday

Iime's Telefcope.

The

The Explanation of the following Table.

IOOK for the even Hundreds at the Top, and the Parts of an Hundred in the Left Side ; and in the Place of meeting you have the Cycle of the Sun. Let it be requir'd, to find the Cycle of the Sun for the Year 1734? I look for 1700 at the Top, and for 34 in theSide. I find 1700 in the firft Column for the Hundreds, and 34 in the fecond Column for the odd Years, and in the Angle of Meeting, I find 7, the Cycle of the Sun for the faid Year.

Now, for the Dominical Letter for that Year, feek the Cycle of the Sun thus found, in the laft Column but one on the Right in the Table; and againft it, you have the Dominical Letter F.

Example 2. I defire to know the Cycle of the Sun for the Year of Human Redemption 1700 ? I feek the Year from the Top; I find it in the firft Column of Hundreds; and in the next Line beneath, and againft the \circ in the Side, I find I, the Number requir'd. Now I look for this Number I in that Column titled at Top, (Cycle Sun,) and againft it I find G F; it being Leap-Year, G ferves till the 24th of February, and F throughout the reft of the Year.

Note, Till 1800, you have the Dominical Letter againft the Year, on the Right Hand.

A Table fieroung the Cycle of the Sim, and the Domimical Letter, froms the Year of our Lord 1700 , to the Year 4400 , and may be contimi'd for ever,

The odd $380039004000 / 41004200 / 4300 / 4400$ Year is al ways

pOpe Grogory XII. hinding the fulian Account erroneous, reform'd in afrer the manner of this Table. The fulian Year confits of 365 Days Six Hours ; which is 10 Minutes, 34 Seconds more than the real Tropical Year, confiting but of 365 Days, 5 Hours, 49 Minutes, 26 Seconds. Now thefe yo Minutes 34 Seconds, from the frnt Year of the Fulion Account (which took date before the Birth of Chrift) to the Year 1600_{3} 2. mounted to 12 Days; and fo many Days the 7 utians were too foon in reckoning the Vernal E quinox, ad contcquently roo late in reckoming them Month. Ihe Pope looking back no father than the Conch of Nice, adued 10 Dass tohisown Birth-day, O5. 5. $558 a_{3}$ and calld it the 1 ymi ath by that heans the Vernal Equmox fell on Ror 25. This Refomation of the Calendet is call'd the fregorima AGcotht, or Mew Stile: We in Great Britoin and Irclond fill follow the Jibiar Account, or Old Sile. Our Vernal Equimox falls now on the roth of March, equal to their 2 th and will be on Crifmas-Day the Year 10200 , if the world endure fo long, and the Fulian Account goon with out Corection. Scerterable

Time's Telescope.
ARable bering the Roman Dominical Letter till the Tear 3200, and may be continu'd for ever.

T'be Explanation of the foregoing Table.

YOU are to Look for the Dominical Letters for the even Hundreds in the upper-moft Line, and againft the 0 in the firft Column on the left Hand. You nuft take heed to the even Hundreds that are not Leap-Years, according to the new Stile: For tho' you find two Letters beneath them, you are to ufe but one.

For Example ; I demand the Sunday-Letter for 1800 ; I look for 1800 from the Top, and in the next Line beneath it Ifind FE. Now it being not a LeapYear, I ufe E only, and take no Notice of F.

This care is to be taken only in this one Line : All the Hundreds that are Leap-Years in the Table are in the laft Column on the Right-Hand. (See Table Page 8.)

Example 2. I wou'd know the Dominical Letters the Year 2000. I look for 2000 at the Top of the Table; and in the uppermoft-Line beneath it I fee $B \cdot A$, both to be taken in, it being Leap-Year.

Example 3. Let it be required to know the Dominical Letters for 1823 . I feek for 1800 at the Top; for 28 in the Left-Hand fide, and in the place of meeting I have $F E$, both to be ufed, it being LeapYear.

Example 4. I wou'd alfo know the Sunday-Letter for this prefent Year 1734. I look for 1700 at the Top of the Table, for 34 in the fide; in the Angle of meeting I find C, the Dominical-Letter for the faid Year.

The Dominical-Letter is ufed in finding the Day of the Month, 83 . as in Page 12 ; but I have made the Day of the Month much eafier to find another way. Read Rage 1 , and 2, \mathfrak{Z}_{6}.

THE following Table, by help of the Dominical Letter, Thews the Day of the Week and Month for ever in both Accounts.

Example 1, for the Britfb Account : I would know what day of the Week begins 7 anuary the Year 1734? I look for the Dominical Letter in the Table, Page 7, and I find the Domin. Letter to be F; now I look for Fanuary in the Table, which I find in the uppermoft Line ; and againft it to the Right Hand, 1 look for F, which I find in the 6 th Column; I call it Sunday; the next to the Right Hand (G) I call Morday, and A Tuefday, the firtt Day of the Month. Now in that Column 1 find 1-8-15-22-29, all the Tuefdays in 7 anuary; in the next I find 2-9-16-23-30, all the wednefdays in the Month ; the third Column, Tburfdays; the fourth Eridays, and fo thro the Year 1736, being Leap-Year, I muft nake ufe of two Letters. I look in the Table, Page 7, for the Dominical Letters, which 1 find to be DC. Now D ferving till the $24 t b$ of February, 1 look for D againft Fanuary; 1 find it ftand above the fourth Day of the Month, which is the firft Sunday in Fanuary, and the Numbers in the next to the Right, are all Mondays; and confequently the next Column to the Lefr muft contain all the Saturdays in the Month.

Againtt Feburary I find D in the firt Columnall Sundays: C ferves for all the reft of the Year.

भnclexn aitio 20 ?

Time's Telefcope.

1 Table fhewing the Day of the Month, and the Day of the week in both Accomuts for ever.

For the Forcign Day of the Month, take the Gregorian Letter, and the fame method that you ufe in finding the Britifh.

Example for 1734. I look for the Dominical Letter in the Table, Page 9, which is C, and I find it in the $3 d$ Column againft 7 an. which fhews me, the Firft Sunday falls on the 3 d Day of the Month: 1 make this Sundiay my Rey. Day to find what Day of the Week any Day of the Month falls: So 1 find, Fark. begins on Friday, Feb. Mar. and Nov. on Monday. The Year 1736. A G are the Dominical Letters. By A I fee fan. begins on Sunday; and by the fame Letter Feb. on Wednefday: By G Mar. and Nov. begin on Thurfday; spr. and july on Sunday, May on Tuefday; 7une on Friday; Aug. on W'ednefday; Sept. and December on Saturday; 1800, E is the Letter; Fan. begins on Wedmedday, Feb. Mar. Nov. on Saturday.

A Table Jbewing the GoldenNumber till the Year 5400.
e odd Year o be found re.
7 -

39.58
+0
+0

 446382
1456483

489786
$+96887$
506988 517089
52.7190 $5=7$ 547392 557493

Find the even Hundred at the top, the add. Year n the fide ; in the Place of meeting youll find the Golden Number.
Example for the Year tyoo. In the firt Columa it. the Top, and in the next Line beneath it, and aainft the of in the fide, Ifind in, the Golden Number. Iou have the Golden Number for all thefe even Hunreds in the fame Line, and for thofe odd Years in the ide that are in that Line:
Example for 1734 . I find 1700 at the Head, 34 n the Side, in that Column under 1700, and againit 34 find 6, the Golden Number. Note, The Goldeat Number is the fame in both Accoments.

Time's Telefope.

The Fulian Eafter calculated for 100 Years.

Eafter-day.	Eafter-day.	after-day.	Eatter-day.
1734 Apr. 14	1762 Apr. 7	1790 Mar 24	1818 Apr. 14
1735 Apr. 6	1763 Mar. 23	1791 Apr. 13	1819 Apr. 6
1736 Apr. 25	1764 Apr. 11	1792 Apr. 4	1820 Mar. 28
1737 Apr. 10	1765 Apr. 3	1793 Apr. 24	1821 Apr. 10
${ }_{1739}{ }^{17}$ Apr. 2	1766 Apr. 231	1794 Apr. 9	1822 Apr. 2
1739 Apr. 22 1740 Apr. 6	1767 Apr. 81	1795 Apr. 1796 Apr. 20	1823 Apr. 22 1824 Apr. 6
1741 Mar. 29	1769 Apr 191	1797 Apr. 5	1824 Apr. 6 1825 Mar. 29
1742 Apr. 18	1970 Apr. 41	1798 Mar. 28	1826 Apr. 18
1743 Apr. 3	1771 Mar. 271	1799 Apr. 17	1827 Apr. 3
i 744 Mar. 25	1772 Apr. 151	1800 Apr. 8	1828 Mar. 25
1745 Apr. 14	1773 Mar. 311	1801 Mar. 24	1829 Apr 14
1746 Mar. 30	1774 Apr. 618	1802 Apr. 13	1830 Apr. 2
1747 Apr. 19	1775 Apr. 121	1803 Apr. 5	1831 Apr. 19
1748 Apr. 10	${ }^{1776}$ Apr. 3	1804 Apr. 24	1832 Apr. 10
1749 Mar. 26	1777 Apr. 161		33 Apr. 2
1750 Apr. 151	1778 Apr. 81	1806 Apr. 1	
1751 Apr. 71	1779 Mar. 3118	1807 Apr. 14	You bave no-
1752 Mar. 29	1780 Apr. 1918	1808 Apr. 5	thing to do bere
1753 Apr. 11	1781 Apr. 418	1809 Mar. 28	But to look for
1754 Apr. 3	1782 Mar. 2718	1810 Apr. 17	the Year; and
1755 Apr. 23	1783 Apr. 1618	1811 Apr. 2	In that Column
1756 Apr. 14	1784 Mar. 3118	18:2 Apr. 21	and Line
1757 Mar. 30	1785 Apr. 20, 18	1813 Apr. 13	Eafter-day you
1758 Apr. 19	1786 Apr. 1218	1814 Mar. 29	will find.
1759 Apr. 111	1787 Mar. 28.18	1815 Apr.is	
1760 Mar. 261	1788 Apr. 1618	1816 Apr. 9	
1761 Apr	$27^{9} 9$ Apr. $811{ }^{\text {d }}$	317 Mar. 25	

T'be Gregorian Eafter calculated for 100 Years.
Eafter-Day. 1734 Apr. 25 1735 Apr.Io 1736 Apr. 1737 Apr. 21 1738 Apr. 6 ${ }^{1739}$ Mar. 29 1740 Apr. 17 ${ }^{1741}$ Apr. 2 1742 Mar. 25 1743 Apr. 14 1744 Apr. 5 1745 Apr. 18 1746 Apr.is ${ }_{1747}$ Apr. 2 1748 Apr. 14 ${ }_{1749}$ Apr. 6 1750 Mar 29 $175 \mathrm{I} A \mathrm{pr} .1 \mathrm{I}$ ${ }^{1} 752$ Apr. 2 ${ }^{1753}$ Apr. 22 1754 Apr. 14 1y 55 Mar. 30 1756 Apr. 8 1757 Apr. 10 1758 Mar. 26 1759 Apr. 15 1760 Apr. 6 ${ }^{17} 76 \mathrm{I}$ Mar. 22

Eafter-Day.
1762 Apr. 11 1763 Apr. 3 1764 Apr. 22 ${ }^{1} 765$ Apr. 7 1766 Mar 30
1767 Apr.s 9
1768 Apr. 3 1769 Mar. 26 1770 Apr. 15 1771 Mar. 3 I 1772 Apr. 19 1773 Apr.ri 1774 Apr. 3 1775 Apr. 16 1776 Api .9
1777 Mar 30 1778 Abr. 19 1779 A pr. 4 I 780 Mar. 26 1781 Apr. 15 1782 Apr. 7 1783 Mar. 23 1784 Apr.is 1785 Mar. 27 1786 Apr. 16 1787 Apr. 8 1788 Mar. 30 1789 Apr. 2

Eafter-Day.	Eafter-Day.
1790 Apr. 4	1818Mar.22
1791 Apr. 24	1819 Apr.rs
1792 Apr.is	1820 Apr. 2
1793 Mar. 31	1821 Apr. 22
1794 Apr. 20	1822 Apr. 7
1795 Apr. 12	1823 Mar. 30
1796 Mar. 27	1824 Apr. 18
1797 Apr. 16	1825 Apr.
1798 Apr. 8	1826 Mar. 26
1799 Mar. 24	1827 A pr.15
1800 Apr 13	1828 Apr. 6
1801 Apr. 5	1829 Apr 19
1802 Apr 18	1830 Aps. 11
1803 Aprio	1831 Apr.
1804 Apr. 1	1832 Apr. 22
1805 Apr.14	1833 Apr. 7
1806 Apr. 6	
1807 Mar. 29	Tou bave n-
1808 Apr. 17	thing to do
1809 Apr. 2	
1810 Apr. 22	But to. $100 k$
1811 Apr.14	for the Year.
1812 Mar. 29	In that Co-
1813 Apr.18	lumu and Line
1814 Apr.10	Eafter - Day
1815 Mar. 26	you will fud.
1816 Apr. 14	
1817 Apr. 6	

A Table, Aowing zubat Days in thefe Montbs axe equal to each other; and may ferve for all the Months in the Year.

Time's Telefcope.
A Perpetual Table to fund the Moveable Feafts in loth Accounts.

The Explanation of the preceding Table.

Tfind the Moveable Feafts and Fafts, enter the Table with either Eafter, or the Number of Direction, which you like beft; and in that Line yor have the Moveable Feafts for any Year propos'd.

Example 1: I look for Eafter in the Table, Page 14, for the Year 1734; and I find it to be the 14 th of April. Now I look for the Title Eafter at the Top of this Table; and guiding my Eye down that Column till I come to April 14, in a Line to the Right and Left, I have all the Moveable Feafts and Faits at one View, Mid-Lent Sunday, Mar. 24; Sbrove-Sunday Fel. 24; Rogation Sunday, Myy 19; Afcenfon-Day, May 23 ; and fo thro'.

Example 2. I look for the Number of Direction for the Year 1800: In the Table, Page 21, I find it to be 18. I enter the Table with 埋 in the firlt $\mathrm{Co}-$ lumn on the Left hand; and it being Leap Year, I look for Sbrove-Sunday in the fecond large Column, and find it to be Feb. 12 , Mid-Lent Sunday, Mar. 18 ; Eafter-Day, Apr. 8.

To find the Roman Feafts.

FInd the Gregorian Eafter, or Number of Direction. Enter this Table with either of them, after the fame manner as before mention'd, and you have your defire. The Roman Eafter for 1734 , falls on Apr. 25, Middle Lent Sunday, Apr. 4 ; Sbrove-Sunday, Mar. 7, \&c. Sbrove-Tuedday, the next after Sbrove-Sunday; Firft Cay of Lent, next Wednefday after, commorly call'd Alb-Weduefday.

The Explanation of the following Table.

FIRST, find the Dominical Letter, and the Golden Number for the Year propos'd; then enter she Table with the Golden Number on the Left hand side, and the Dominical Letter at the Top; in the Place of meeting you have the Number of Direction.

Example 1, for 143 . In the Table, Page 7, 1 find the Dominical Letter is F : In the Table, Page 13, I look for the Golden Number, which is f. Now, I feek for 6 to the fift Column of this Table, and F at the Head, in the Angle of meeting I find 24, the Number of Direction for that Year.

Example 2, for 1700 . The Dominical Letters are G F ; (Obferve, you muft never ufe the Letter to the Left hand to this Table, the Golden Number io. Now, from io in this Table, guide your Eye till you come under F ; and there you will find ro, the NumBer of Direction, and this Namber directs you to the Movable Feafts in the Table, Page 18, the faid Year 1700.

Example 3, for 1815 , C the Dominical Letter, $1 \mathbf{x}$ the Golden Number; by which I difcover the Number of Direction to be 28 ; with this 28 I enter the Table for the Movabie Feafts and Fafts; which Mews me, that Shrove: Suldat falls on Leb. 28, Middle Leit Sun-
 SVity 23, Afenfonday, or Holy Thur day May 27, WbitSithdaf Fint 6, Trinity-Sunday Yune 13, Advent-Sunday A Whember 28.

Goldent

Another way of finding Eafter by the Number of Direction: If this Number be 10, or under 10, Eafer falls in March; if 11 , or above, in April; and if in April, fubtract ro, the Remainder gives Eafler-Day in April; but if Min March, add 2r, the Sum will give Edfer-Day in Mien And contrary; you may find the Number of Directicn by Eafter, if in March, by fubtracting $21 ;$ if in $A p r i t$, by adding 10 .
 Direction is found by the fame Rules above-mentioned, with this only difference, that it muft be done with the Gregorian Letter: For the Golden Number is the fame for both Accounts.

For Example: $C B$ being the Dowinical Letters for 1740, and the Golden Number 12,1 look for 12 in the firt Column, and for B at the Top, and in the Flace of meeting I find 27 , the Number of Direcfion for the Year 140.
Note, if there be two Dominical Letters, you mult always ufe that to the right Hand to this Table.

The Year 1754, the Number of Direction is 24; from which I fubtract o, to find Eafter-Day in Ppril.

The Year 177I, the $/$ Direction 24 Year 1754 Number of Direction is 10 ; to which I add 21. See the Work: The Reverfe of thefe Examples Thews the Number of Direction, as I mention'd before.

Add 10 to 14 , gives 24 . Subtract io
Remains r_{4} Eafter April. Direction 100 Yeas 17113
Add 21

The Sum 3 I Eafter Masch. Subtract 21 from 31, and remains 10 , the Number of Direction.

Time's Telefcope.

The Gregorian E PACT:

Fou'll find the odd Year under here.	1700	1800	1900						2500
of 19.585776595	-	4	28	4	17 28	22	8	12	25
12039587796	20	14	9	4	28	22	87 28	$\begin{aligned} & 12 \\ & 23 \end{aligned}$	19
22140597897	1	25	20	15	9	3	28	23	28
322416077998	12	6	1	26	20	14	9	4	28
-43 $426180 / 99$.	23	19	12	7	1	25	20	15	9
-5 $244362{ }^{61}$	4	28	23	18	12	6	1	26	20
$62544{ }^{63} 82$	15	9	4	29	23	17	12	7	1
726456483	26	20	15	11	4	28	23	18	12
827466584	7	1	26	22	15	9	4	29	23
9,284766 85	18	12	7	3	26	20	5	$\underline{1}$	4
1029.48786		23	18	14		1	26	22	15
1130496887	11	4	29	25	18	12	9	3	26
	22	15	11	6	29	23	18	14	
13325170189	3	26.	22	17	11		29	25	18
$\cdots 4331527190$	+ 4				22		11	6	29
15 3453					3		22	17	11
$16 \mid 35547392$	2	29	25	20	14	8	3	28	22
171365517493	17		6	1	25	18	14	9	3
18 187, 617594	1	1	17	12	6	29	25	20	14

Look for the even Hundreds at the Top, and the odd Year in the Left hand Side, and in the Angle of meeting you have the Epact.

Example for the Year 1734. I find 1700 at the Top, 34 in the Side; I guide my Eye to the Right hand, till I come under 1700, and there I find 25, the Epact for the faid Year, 18 for 1834 .

For the even Hundreds you have the Epacts in the uppermoft Line beneath them ; and againft the o in the Side ; 9 for 1700,3 for 1800,28 for $1900 ; 9$ is the Epact for 1719. All thefe odd Years in that Line have their refpective Epacts againft them.

Tube Germs and their Returns.

Hillary-Term begins Fan. 23, and ends Feb. 12.
And i|fanuary $20 \mid$ Observe, each Return contains
has $2 \mid$ January 27 as many Days as there are Re-
Four $3 \left\lvert\, \begin{array}{ll}\text { February } & 3\end{array}\right.$ turns in the Term. Returns. $4 \mid$ February 9

Eafter-Term begins the Wednefday-Fornnight after Eafter, and ends on Monday after afcenfion-day. Each Return continues Five Days.

>	And	In Days after Eafer:	
has	2	5 Weeks after Eafer.	
Five	3	W Month after Eater.	
Returns.	4	5 Weeks after Eafere.	
	5	The Day after Afcenfion-Day.	

> Trinity Term begins on Friday after Trinity -Sunday, and ends the Wedmefday-Fortnight after. Each Return continues Four Days.

And I The Monday after Trinity -Sunday.
has 288 Days after Trinity-Sunday.
Four 3 is Days after Trinity-Sunday.
Returns ${ }_{4}{ }_{3}$ Weeks after Trinity -Sunday.

Michaelmas-Term begins O8tob.23, and ends Nover:b.28,
And $\begin{aligned} & 1 \\ & 2\end{aligned}\left|\begin{array}{cc}\text { Ocher } & 20 \\ \text { October } & 29\end{array}\right| \quad$ There Return-Days are fest
has 3 November 4 apart for the Several parts of

Six 4 November 12 Proceedings in any Cause to Returns. 5 November 18 be determined. | | 5 |
| :--- | :--- |$|$ November $25 \mid$

The Lam has Turns, and Returns many,
Or Right, or Wrong, to get a Pent.

The Fixed Feafts and Fafts.

Ircumcifion, or New Year's Day, Epiptiany, or Twelfth Day,	$\begin{array}{ll} \text { Fan. } \\ \text { Fan. } \end{array}$
Converfion of St. Paul,	Fan. 25
Marryrdom of King Charles the Firft	$7 \mathrm{an}$.
Purification of the V. Mary, or Candlemas-Day,	Fcb. 2
Si. Matthius (in Leap-Year 25)	Feb. 24
Lady Day, or Annunciarion of the V. May,	Mar. 25
St. Mark the Evangelift,	Apr. 25
St. Pbilip and Facob, or May Day,	May
The Birth and Return of King Cba	May 29
Sr. Barnabas the Apoftle.	Funf 15
St. Fohn the Baptif, or Midfummer-Daj,	Fune 24
St. Peter the Apoltle,	Fune:29
Sr. Fames the Apoftle, -	fuly 25
St. Bartholomers the Apoftle,	Aug. 24
Sr. Matthew the Apoftle,	Sept.
Michaelmas, or St. Miobael the Arch angel,	Sept 29
St. Luke the Evangelift,	Oat. 18
St. Simon and Fude, -	O\&. $=8$
All Saints,	Nov.
Gun-Powder. Treafon,	
St. Andrew the Apoltle,	Nov. 30
St. Thomas the Apoftle,	Dec. 21
Chriftmas, or the Nativity of our Lord,	Dec. 25
St. Stephen the Mroto Martyr,	Dec. 26
Sr. Folin the Evangelift,	Dec. 27
Innocents, -...	Dec. 28

There are four Weeks in the Year, calld Ember wceks; the firf Week in Lent, the nextafrer Whic-Sunday, the af-ztt of September, and the 13 th of December, Palfion. Week, the Week before Eafter, Paffion-Sunday, the fecond Sunday before Eafter, Palm-Sunday, the firt before Eafter, Low. Sunday, the fint after Eafter, Corpus, Cbrifi. Thunfay after Trinity Sunday.

Remarkable D ATS.

KIng George the Second Born O\&F. 30, 1683 Queen Caroline Born Mascb I, 1982,3
The Prince of wates Born \mathcal{F} an.
1706
Princefs Alume Born OEt. 22
Princefs Amalia Born May 30, Princefs Carolina Born May 30, Prince william Born Apr. 15, Frince fs Mary Born Fib. 22,

David, or the Uelcb Champion,
Lqual Day and Night,

Patrick, or the Irifb Champion,
Gerige, or the tiglifh Champion,
Longeft Day, or St. Barrabas,
Election of Sheriffs in Londen,
Swithln,
Dog.days begin,
Lammas,
Dog-days end,
— Equal Day and Night, Sheriffs of Londch iworn,

Mar. I.
Mar. 9.
Mar. 17. Apr. 23. fine II Sept. 29. Iord Mayor's Day, when fworn at Weftminfter, OEF.29. St. Martim, Shorteft Day,

Nov. 11.
Dec. 1 .

The Scotch TERMS.
Candlemas-Term Begins Fan. 23. Ends Fob, 12. Wbitfun-tille-Terin Begins May 25 . Ends fune 15 . Lemmas-Term Begins fuly 20 , Ends Aug 8. Martinmas-Term:Begins Novo. 3. Ends Nov. 29.

The Irifb Terms are the fame as Weftminfer-Terms, excepr that Michaelmas Term, which begins OZ. 13. adjoutrns io Nov. 3. and from thence to the 6th. It hath 7 Returns.

Thbr Explanation of the Table of the Sim's Declimation, Rifing and Seiting.

FOR the Sun's Declination, find the Month at the Fop, the Day of the Month in the Side; and in that Column, under the Month, and againft the Day, you have the Sun's Declination North, or South.

For Example; Fanuary I, the Sun's Declination is 21 Degrees, 41 Minutes South; Feb. 1, 13-42, Mar. 1, 3-19. Example 2. I defire to know the Sun's Declination the roth of March. I look for March at the Top, for the Day in the Side; and in the Place of meeting I find o N. 14, or 14 Minutes North Declination.

Guide your Eye from the Day in the Side, till you come to that Column under the Month you reckon in, and there you have the Hour and Minute of the Sun's Rifing and Setting. Example I. I look for the firt day of \mathcal{F} amuary, and againft it I find 8 and 4, the Sun's Rifing and Setting. The 9 th of March the Sun rifes at 6, and fets at 6: The 1 sth of 7 an. the Sun rifes 40 Minutes after 9 , fets 20 Minutes after 4 : The rith of December the Sun rifes 13 Minutes after 8, fets 47 Minutes after 3. It is needlefs to give any Examiples of the Sun's rifing and fetting at Edinbargl' becaule it's found after the fame method. For the other Places following, you are only to look for the Name of the Place at the Top, for the Month and the Day in the Side, and in the Place of meeting you have the Sun's rifing and fetting the roth day of every Month in the Year: The roth day of 7une the Sun rifes at Archangel. 37 Minutes after 1, fets 23 Minutes after 10; at Conftantinopie, the Sun rifes 26 Minutes after 4 , and fets 34 Minutes after $7, E 2$.

A Table of the Sun's Declination:

$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$	D. ${ }_{\text {D. }}^{\text {D. }} \mathrm{M}$.	Febr ${ }_{\text {N. }}^{\text {M }}$	March.	$\frac{\text { April }}{\text { D. M }}$	May.	June.
1	215.41	133.42	33.19	$8 \mathrm{~N}_{40}$	18 Nr	23 N. 12
2	30 20	22	$\begin{array}{ll}2 & 56 \\ & 32\end{array}$	9 1 23	23 38	16
4	10	1241	9	45	52.	22
5	$20 \quad 58$	20	1	$10 \quad 6$	19.6	2
6		1159	21	27	20	26
7	34	38	- 57	49	34	28
8	21	17.	3.4	149	46	28
9	8	10 55	10	30	59	
10	19.55	34	0 N. 14	50	$20 \quad 11$	29
	42	12	37.	1210	24	8
12	27	3) 59	11.1	30	35	8
13	14	28	25		46	28
14	$18 \quad 59$	6	4	13. 10	58.	27
15	14	$8 \quad 43$	$2 \quad 11$	29	218	\%
10	28	21	35	47	19	24
17	13	$7 \quad 38$	58	$14 \quad 8$	29	21
18	$17 \quad 57$	$3)$	$3 \quad 22$	26	38	18
19	41	12	45	46	47	1,
20	24	$6 \quad 40$		$15 \quad 4$	56	
21		26	31	21		7
22	1649	3	55	40	13	3
23	32	$5 \cdot 40$	$5 \quad 18$	57	20	$22 \quad 57$
24	14	17	40	1615	27	52
25	$15 \quad 56$	$4 \quad 53$		32	34	47
26	37	30	26		41	41
27	19		48	1.75	47	34
28	00	343	7 11	21	53	25
29	14 41		33	37	58	20
30	21			53	$23 \quad 3$	12
21	12					

Time's Telefrope.
Tbe Sun's Declination contimu'd.

Time's Telefcope.
A Perpetual Table of tbe Sun's Rifing and Setting at London, Amfterdam, Hanover, Antwerp, Berlin, Oftend and Warlaw.

Tbe Table of the Sun's Rifing and Setting at London, Amiterdam, Hanover, Antwerp, Berlin, Oftend and Wariaw, contimu'd.

The Table of the Sun's Riving and Setting at London, Amfterdam, Hanover, Antwerp, Berlin, Offend, and Warfaw, continu'd.

Time's Telefcope.
A Perpetual Table of the Sun's Riving and Setting at Edinburgh, Inverara, Copenhagen and Mofcow.

T'be Table of the Sun's Rifing and Setting at Edinburgh, Inverarra, Copenhagen and Mofoo, continu'd.

'be Table of the Sun's Rifing and Setting at Edinburgh, Inverarra, Copenhagen and Mofcow, continu'd.

Time's Telefcope.
4 Table of the Sun's Rifing and Setting at the Pe Places bercunder namid.

$38 \quad$ Time's Telofcope.
A Table of the Sun's Rifing and Setting at thefe Places. bereunder namid.

A Table of the Sun's Rifing and Setting at the Pe Places bereunder namid.

Of tbe Sun's Rifng and Setting at Greenland.

BY the preceding Table you may fee, the Sun rifes to Greenland, the 1 oth of February, 23 min . paft 11, and fets 37 min. paft 12 ; and fo continues to rife and fet till April 7 ; And then he appears in their Horizon at Midnight, and goes round them (once in 24 Hours) till Augult 14, when he begins to fer ; from that time, he rifes and fets every Day till Offober 10 ; then he fers for good and all; they fee him no more till Feb, 10 , following : So the Length of their longeft Day is I 28 of our Days; and their longeft Night 122 . Their thorteft Day and Night are but a few Minutes.
There are two Places on the Globe (the Polar Horizons) where the Inhabitants (if there be any) have but one Day and one Night in a Year. The Sun rifes to thofe who live directly under the North Pole the Ninth of March, and fets the Twelfth of Septeriber: To thofe under the South Pole, the Sun rifes the 12 th of September. and fets the 19th of March. The Sun's Altitude in either of thefe Places can never exceed 23 Degr. 30 Min . for that is the Sun's greateft Declination from the Equinoctial Line, to either of the Tropicks of Cancer or Capricorn. By which you may perceive, the Sun can have but very faint Influence upon thefe Mountains of Ice, and frozen Seas! there arrefted by the tyrannical Winds of the Poles: Which Winds penetrate thro' the Bowels of the Hills, clofing up the Pores of the Earth, forbidding her Pregnancy, congealing the liquid Eiement into Chryftal Rocks, and folid Plains of Glafs! Fiercely forbidding the flowing Obedience of the Ocean, to the Moon, and making the foft and nourifhing Bofom of the Waters become the fiinty Sepulchre of the finny Armies of the Deep.

The Explamation of the Six following Tables．

1N the Table for the Sun＇s Place，look for the Month at the rop，and for the Day in the fices under the Monch，and againt the Day，you have the Degree and Minute of the Sun＇s Place in any of the twelve Signs．The firt of fanuary the Sun is in Capricom 22 Degrees， 9 minates；the firt of February， 23 Degrees， 37 minutes in Aquarius；the roth of March， 38 minutes in alries．See the Table．

The Names and Chotratiers of the Twelve Signs．

Aries the Ram，r ，Taurus the Bull， \mathcal{O} ，Gemini the Twins； II，Cancer the Crab，©s．Leo che Lion，©，Virgo the Virgin，吸，Libra the Ballance，az，Scorpio the Scorpion，M，Sagitta－ rius the Archer，Z．Capricornus the He－Goar，ve，Aquarius the Waterer，Aiv，and Pícos the Fithes，犬大．
I only mame the Signs here for the fake of the Learner， that he may not be at a lofs to exprefs the Sun＇s Place in any of thefe Signs or Contellarions；for in the Tables they are fignify＇d by thefe Characters annex＇d．

Of Day－break，Trailight，\＆c．

Look for the Month and rhe Day in the fiake，and againft them to the Right，you have the Hour and Minute of Day－ break，Twilight，Day＇s length，Night＇s length．Feh．20，Day breaks 39 min．after 4；the end of Twilighe，（that is，after Sun－fer） 21 min ．after ？；Day＇s length 10 hours， 92 min． Night＇s length， 13 hours， 8 minuies．

Of the Equation of Time．

Look for the Month at the top of the Table，for the Day in the fide；in the Place of meering you have the Differeace n Minutes and Seconds，berween a good Clock and a true Sun－Dial．Fan． 26 ，the Difference is 14 minures 34 feconds． See the Table．

A Table of the Sun's Piace tbrougbout the Year.

Time's Telefsope.
Thbe Table of the Sun's Place, contimu'd.

*Table forewing Daybreak, and the End of Twilight for the Lattudide of London, and the Length of Lay and Night.

1 Table, Serving Day-break, and the End of Truilight for the Latitude of Edinburgh, and the Length of the Day and Night.

Time's Telefcope.
A'Table of the Equation of Time, for Regulating of Clocks and Watches, \&xc.

Time's Telescope.
The Table of the Equation of Time, for Regulating of Clocks and Watcibes, \&c. conimin'd.

A Table of the Moon's Seutbing and Sbining; by wbich moy be readily fourd ber R ifing and Setting.

TO find the Moon's Sourhing, enter the firf Column with the Moon's Age ; and againft it in the next Column on the Right Hand, is the time

$\begin{array}{l\|} \text { Moons } \\ \text { Aghe. } \end{array}$		$\begin{aligned} & \text { The } \\ & \text { Moons } \\ & \text { Age. } \end{aligned}$	$\frac{o f}{i n}$
-16			
217		228	
318	224	$3 \quad 27$	
19	$3 \quad 12$	26	
520		$; 25$	4
621	44^{8}	24	44^{8}
823			
${ }_{4}{ }^{8} 24$			
1025		10	
	848		
	36		
	1024	1317	1024
1429	1112	1416	1112

Example i. Fan. 18 , 1734, the Moon is 24 Days old, which gives the time of her Southing 7 Hours, 12 Minutes in the Morning.

Example 2. Augujt $=9$, 1734, the Moon is 12 Days old; which I feek in the firt Column, and right againft it in the $2 d$ Coiumn is 9 Hours 36 Min . which tellis me, flie is South 36 Minures paft 9 at Night.

To find the Time of the Moon's Rifing.

Rule. If the Moon be under 16 Days old, add the time. of her hining (which you'll find againf her Age in the Table) to the time of Sun-rifing: But if fle decreafe, that is, when flie is above 15 Days old, fubtract the time of her flitning from the time of Sunrifing, gives the time of her Rifing.

The Moon's Rifing and Settivg continu'd.

Example. AN 6, 1734, the Moon is 12 Days old; which gives her time of Shining to be 9 Hours, 36 Minates: This added to 7 Hours, 54 Minutes, the time of Sun-rifing at London, gives 5 Hours, 30 Minutes after Noon, the time of Moon-rifing.

To fiud the time of Moom-etting.

If the Moon increafe in Light (as fhe does the firft 15 Days) add the time of her Shining to that of the Sun-fetting; but if the decreafe, fubtract the time of her Shining found in the foregoing 'Table) from the Sun-fetting, the Remaincer is the time of her fetting.

Example. F^{2} 6, 1734 , the Moon is 12 Days old, gives her Shining 9 h .3 m . which add d to the time of Sunfetting at London, gives 13 h .42 m . that is, 42 min paft I next Morning, the time of the Moon-fetring.

Note, Thefe Rules are not perfectly true, by reafon they fuppofe the Moon's Orbit to be a perfect Circle, lying in the Plane of the Eclip ic, and fo free from Latitude, with a Motion every Day alike: For when The has great North Latitude, and in Apogen, the will rife more than an Hour and 40 Minures fooner than by the Rules above: And when fhe has grear South Latitude, and in Perigeon, fhe will rife later in the Northern Hemifphere, by more than an Hour and 7o Min. So the fame will happen in the time of Seting. However, thefe Rules will give the Reader an [dea of the Moon's Motion.

A Table of the Moon's Place every Day al Noon for the Year 1734.

Que Table of the Moon's Place every Day at Noon, for the Year 1734 , continued.

The Table of the Moon's Place every Day at Noon for the Year 1734.

To find the Moon's Place any Day in any Year propos'd, paft, or to come, according to ber Middie Motion.

In this fort of Calculation, the Signs muft be thus numberd :
 :O, X: II.

A Table of the Latitudes and Differences of Meridians of the following Places from London.

The Cbarges and Eclipfes truly calculatess for 30 Rears compleat, for the Meridian of London; and by belp of the preceding Table, may Serve for the Meridian of any of these Places therein inferted.

Thbe Changes Explain' ${ }^{2}$.

* 1 OU have nothing to do here, but to look for the Year and the Month in the firf Column on the Left hand. and in the other four Columns, to the Right, you have the Day, Hour and Ninute of New Moon, fint Quarter, Full Moon and laft Quarter.

Example i, for 1734 Having found the Year, I look for fanury, which I find in the firft Column, and againft it, in the fecond Column, I find it's Full Moon 25 min. paft 32 the gth Lay; New Moon the 23 d Day, 23 min paft I1, Night; Firft Quarter, the 3 If Day, 21 min. pat 8

Example an for Lecember, 1735 . Having found the Year and the Nonth, I find againft December, and unler the Tirle Laji Quarier, 25-10-2I, the Day, Hour nd Minute of Latt Quarter: In the next Column, I nd $3-7-32$, the Day, Hour and Minute of New Moon. n the 4 th I fee $10-4-30$, the Day, Hour and Minute f the Firft Quarter. In the sth Column you have ull Moon 26 min. paft I, the 18 th Day, Morning.
Example 3, for 1736. I demand the Day, Hour dd Minute of the New Moon in fanuary? Againft Ban. in the next Column, to the Right, I find, the Ioon changes 10 min . paft I , the 2 d Day, Morning; ie next New Moon happening in the fame Month, pu'll find it coupled with the Firft, in the fame Co $\mathrm{mn}, 7 \mathrm{Fan} .3 \mathrm{r}-8-15$.
Ntate (m) fignifies Morning and (a.) \&fternoon.

Of the feveral forts of Eclipfes, and their Caufes.

THE Word Eclipfe, in general, fignifies a Deprivation of Light. The Eclipfe of the Sun, (or rather of the Earth) is caufed by the Interpofition of the Moon between him and our fight, and can never happen, but at the Change, or Conjunction, when they are lefs than 18 Degrees diftant, either before, or after the Moon's Nodes.

The Moon's Eclipfe is caufed by the Interpofition of the Earch berween the Sun and Moon; which never happens, but at the Full Moon, and when he is within twelve Degrees of either Node.

There are four forts of Eclipfes, viz. 1. Partial; 2. Central and Annular ; 3. Total without Continuance ; 4. Toral with Concinuance.

1. Partial, is when fome part of the Sum's, or Moon's Body is Obfcur'd, or lefs thantwelve Digits.
2. Annular, is when at the Conjunction, or Interlunium, the Moon happens near her Apogeon, or greateft diftance from the Earth, and when the Sun is lomewhere in the lower part of his Orbit, towards his Perigeon, or leaft Diftance from the Earch ; at which time the Sun's apparent Diameter will be confiderably greater than the Moon's ; and they being apparently concentrick, there will be feena Ring of Light round the Moon's Body. Such an Eclipfe feldom happens.
3. Total withour Continuance, is when the Apparent Dia: meters of the Sun and Moon are equal, or of the Moon and Shadow of the Earth.
4. Total with Continuance. The Sun may be fomewhat Eclipfed above twelve Digits ; but cannot continue totally dark above five Minutes. But the Moon's Eclipfe fometimes amounts to 23 Digits; all above 12, flews her Continuance Totally dark.
There can be no lefs than Two nor more than Six Eclipfes of the Sun and Moon in one Year; and when Two, they ase both of the Sun.

T'be Eclipjes Explain'd.

As the Word Digit, is made ufe of to fignify the quantity of an Ecliple, it will be proper here to acquaint the Learner, how it is to be underftood.
Digit, properly a Finger's breadth, in Aftronomy the 12 th dart of the Diameters of the Sun and Moon.
Note, the following Eclipfes are Calculated to the middle fretime of Obfcuration; fo that an Obferver may begin his Obfervation as follows.
b. m. dig.

0	3	$\left\lvert\, \begin{aligned} & \text { ¢ quarser } \\ & \text { Half }\end{aligned}\right.$	The quantity Eclipfed.
fore the time 130	9	3 quarters	
nnexed in the I 34	12	Total	h.
llowing Tables 136	23	Continu) dark

Example. I wou'd obferve an Eclipfe of the Moon in the Year 1735 Sept. 21, 33 Minutes palt in in Morning; the Quantity being near 6 Digits, I begin my Obfervation at 12 of the Clock, that is, an hour and 20 min . before the time annexed. Now look in the Table of the Difference of Meridians, Page 5it, and you'll fee this Eclipfe mult be oberved at Conftantinople 2 hours, 7 min . Cooner, its Longitude eing above 30 Degrees Eaft from London. And at Inverara n Argylefhire, 20 min . later, it being 5 Degrees Weft from London. For every Degree in Longitude gives 4 Minures in lime.
There will be two Total Eclipfes of the >1736; the fint f them 25 min. after IIat Night, 15 th of March, Digirs 22.
Here the Moon will continue Totally Dark above an our and a quarter. There will be a great Ecliple of the Sun the 18 th of Feb. 1737,4 min. paft 3, near 11 Digits. See be Table.
Note, That the Moon's Eclipfe is Univerfal as to it it's quantity and duration; the Sun's Ecliple is only feen from ome particular places on the Earth where the Moon's hadow falls at that time.

In 1734, Two Eclipfes, both of the Sun, invifible to any part of Great Britain; the firf is Apr. 22, at 10 Morning, and and the other is OEt. $15,21 \mathrm{~min}$. paft Gat Night,

1735	Laft Qu.	$\begin{gathered} \text { New } \\ \text { d h } \end{gathered}$		d h ?
Jan.	509	$\overline{130158 \mathrm{~m}}$	201055 m	270750
Feb.	40400 m	110752 a	19419 m	2601
Mar	51001 a	131126 m	20820 a	280510 m
Apr.	402 12a	111058 a	1975 m	
May	$31307 . a$	111007 m	$18710 a$	045 m
June	20112 a	9548 a	17240 m	1116 m
July	10840 a	9037 m	16927 m	
	310309 m			220125 m
Aug.	291010 m 29 169	7 5 5 4 424 24	$\begin{array}{ll}14 & 4 \\ 13 & 1 \\ 120 \mathrm{~m}\end{array}$	201021 m
Oct.	290527 m	5240 m	121119 m	190826 a
Nov.	250712 a	34142	II 115 m	18101 m
Dec	251021 m	13732	10430	

In 1735, Four Ecliples: ft, of), Mar. 2\%.41'pafi 10, M. invif, $2 d$, of \odot, April $14,58 \mathrm{~min}$. patt 10 , Night, invif. $3 d$, is of $)$. vifible near 6 Digits on the lower fide, on Sept. 2,33 人 pait 1, M. 4 th of O, invifible, OCZ. $5,40^{\prime}$ paft 21 morn.

1736	New , D	d. h.	1	d. h.
jan.	210m.	9108 m .	16763.	24160 m .
Feb.		8,512	$15 \quad 2 \quad 5 \mathrm{a}$.	22 if 5 a.
Mar. $\{$	(1) $\begin{array}{r}1 \\ 31720 \mathrm{~m} .\end{array}$	90	16911 m .	236
Apr.	299	7418	1331	22103 m.
May	2985.5 m .	7645 m .	14340 a .	22031 m
June	2755 a.	5 550a.	13250 m	201110 m
July	27412 m .	520 m .	12 If 6 m	19 89 a .
Aug.	25920 m .	31010 m .	10.72 a .	184110
Sep:	23540 a .	1. 628	9326 m .	16020 a .
Oct.	23229 m9	30231 m .	$8 \mathrm{III2m}$.	16108 m .
Nov.	21238 a		7110 a	141015 a.
Dec.	527	30	7.50	4250

In 1736 , Six Eclipfes, 2 vifible, both of the), total. $1 / f$, Mar.t, 2h.36'a. 2d Mar. 15,), rih. 52^{\prime} dig. 22 Aft; $3 d$ Mar. 31,7 h. $2^{\prime \prime}$ Mor. ©, invif. 4 th of the \odot, Aug. $25,9 \mathrm{~h} .30^{\prime \prime} \mathrm{m}$. $50 b$ of the $\$$, Sept. $9,2 \mathrm{~h} .24^{\prime} \mathrm{m}$. Dig. 2 r . 6th Sept.23, 5 h. 44^{\prime} a. invif. as alfo is the other of the - .

1737	11)	L. L h ha	d	
	7	4	19.8	5
	3	1011592	182	25 II 9 a.
Mar.	587	12520 a	201	27
	215	Ifir 8 m .	19018 m .	26916
	361		18	26
	- ${ }^{\text {a }}$	9625 a .	17355 m .	240
July	1 1 1	9612 m .	1633 a	240
Au	9631 a .	7619 a .	15058 m .	22951 m
Se	8324	6310 m.	13956 m .	2064
Oc	27125	5007 m	12710 a.	204
N	251114 a -	310 IIa.	II 58 m .	1821
Dec.	2587 m	385	2	I

In 1737, Four Eclipfes, 1. Of the © vif. grear, on Feh. 18; 3 h. $4^{\prime} \mathrm{A}$. Digits in on the upper fide. 2d. Mar. $5.0 \mathrm{~h} .35^{\prime} \mathrm{J}$, invif. "d. Aug. 15 , o h. 58^{\prime} ©, invif. 4th. Aug. 29, 3 h. 44^{\prime} vifible $)$, mor, 5 Digits on the upper fide.

Time's Teiefcope.

In 1738, Two Ecliples, and both of the Sun: 1 $\ell, F i b .7$. 5 h. 57^{\prime} Aftern. invif. 2d, Aug. 4, in h. 3^{\prime} Morn. vifible 4 Digits on the lower fide.

In 1739, Five Eclipres: 1 f, \mathfrak{F} an-13, $10 \mathrm{~h} .54^{\prime}$ a. D, vilible, 6 Digits on the upper fide: 2d, fan. $28,4 \mathrm{~h} .4^{\prime} \mathrm{m}$. ©, invif. $3 d, \mathfrak{F u}$ ly 9, 4 h. 18 aft, D, invif. $4^{\text {th, }} \mathfrak{F}$ uly 24, 4 h. $23^{\prime} \mathrm{m}$. (©, vifible 7 Digits on the upper fide, 5 th, Dec. 19, 8 h. 49^{\prime} Sun, vifible 2 Digirs on the upper fide.

1740	d h.	Laft d. h.	New d h.	
Jan.	3320 m	11	178	25511 a
Feb.	12	81132	16548 m	23240 a
Mar. S	1117	986 m	$16337 a$	24031 m
	31930 m			
May	29	7432	14143 a	2110352
June	27817	54	13220 m	201120 m
July	27108 m	$5 \quad 516 \mathrm{~m}$	12410 m	20.110 m
Aug.	26145 a	2.79	11752 a	18451 a
Sept	2468 a	21035 m	10	17910 m
Oct.	241119	238 m	95172	17217 m
Nov.	23122	1822	8740 m	15426 a
		301011 m		
Dec.	$22 \quad 4 ; 0 \mathrm{a}$	30120 m	1055	5953

In 1740. Six Ecliples: $1 / f$, of the D Jan. 2, $10 \mathrm{~h} .25^{\prime}$ Afternoon, vifible, grear, 20 Digits : $2 d$, of the \odot, invifible, on $\mathcal{F a n}^{\prime} 17,8 \mathrm{~h} .7^{\prime}: 3$ d $^{\prime}$, of the ©, invif. Fune 13, $2 \mathrm{~h} .2 \mathrm{c}^{\prime}$ Morn: 4 th of $1, \mathcal{F}$ une 28,9 h. 23^{\prime} invil. 5 th of \bigcirc, Dec. 7 , $10 \mathrm{~h} .55^{\circ}$, invif. 6 th of $)$, vif. 6 Digits on the lower fide, Dec. 21, I hh, 49

1741			Full d h	Lalt $\mathrm{d}^{\text {d }}{ }^{\text {d }}$
Jan'	61125 m	138	21	28212 a
Febr	4954	13646 m	20	m
Mar ${ }^{\circ}$	6	I3 425 l	2117 m	281000 m
Apr°	4442	12.140 in	191030 m	$26 \quad 7252$
May	4124	11102	18716 a	26412 m
June	2 Y 000	9700 a	1635 sm	$2417 a$
	1850 31918	9541 m	1624.4 a	2311372
	$30-29$	9615 a	15311 m	22
	2861	6926 m	13619 a	21313 m
	28031	63	12 1135 ${ }^{\text {a }}$	
Nov'	2760 m	493.02	12625 m	19320 a
Dec ${ }^{\text { }}$	26107 a	5311	12341	199302

In 1641, Two Ecliples of the © invifible; ift, fune 2, 9 h. $49^{\prime} \mathrm{m} .2 \mathrm{~d}$, is Nov. $27,5 \mathrm{~h}, 44^{\prime} \mathrm{M}$. The reafon that the firt of thele is vot feen in Great Britain, is becaufe the D has $49^{\prime} 18^{\prime \prime}$ South Latitude, which is auginented by her Parallax.

Time's Telefcope.

1742	$\begin{aligned} & \text { Firft } \\ & \mathrm{d} \mathrm{~h} \end{aligned}$	d^{r}		d
$\bar{\square} n^{1}$	3 ?	10 04	1801	25
Feb	1110 a	9085 a	1605	24003 m
Mar'	3849 m	100542 m	180234 m	25856 m
Apr	I 554 a	90246 m	1611	23501 a
May	$\begin{array}{r} 1208 \mathrm{~m} \\ 30940 \mathrm{~m} \end{array}$	811111	1501182	232211
June	285	606	14	21844
	282	602	131027 m	2069 m
Aug	261	4 II	1108202	19752 a
Sept	25320 m	210	100718 m	17
OA	248002	15	909102	171100 m
Nov	23317 a	50	212	16617 m
Dec ${ }^{\circ}$	231034 m	1015 m	80912 m	16.36 m

In 1942 , Four Eclipfes, all invifible: the firt May 8 , 1 I h. 38^{\prime} Morn. of D: 2d, May 23, oh. 92 '. (C) Morn, 3d, Nov. 亠 oh. 30^{\prime} Aft. 4 th, Nov. $16,6 \mathrm{~h}$. 15^{\prime} Morn. The) 's Lat. in the ewo firt is North, in the two laft, South.

43	Fuil ${ }^{\text {c }}$	Laft ${ }^{\text {d }} \mathrm{l}$ d	New, ${ }^{\text {d }}$,	Firft Qu. d h
Jan.	291172	70426 a	140736 m	220431 m
Feb	28510 m	51012	$131116 a$	200818
Mar.	29532 a	$70215 a$	is 0118 a	220839 m
Api.	28350 m	60231 m	130700 m	200650 a
Maz	29319 a	500502	120947 a	200644 m
Iune	257002	40020 m	110101 m	181001 m
Juy	25151 m	30411 m	100800 m	170455 a
Aug.	$231000 \mathrm{~m}$	11045 m 300904 a	804062	160106 a
Sepr.	21720 a	290414 m	70129 m	141026 m
Oct	21808 m	28 os 02 a	602.192	131114 a
Nov	20020 m	270915 m	50626 m	120325 a
Dec	19642 a	2703.35	50100	120930 m

In 1643 , Six Ecliples: ift, Apr 13, 9 h 47^{\prime} Morn. Oinvif. 2d, Apr. 27, 3 f. 21^{\prime} Afr. invif. 3d, May 12, 5 h. $\left\{4^{\prime} \mathrm{Aff}_{\text {. }}\right.$ Sun, invir 4 th, Of. $6,2 \mathrm{~m} \cdot 43^{\prime} \mathrm{Aft}$. 5 th. Oct $22,3 \mathrm{~h}, 35^{\prime} \mathrm{m}$. the), vilible and rotal, Digits $21 \frac{1}{8} 6 \mathrm{~h}$, Noy. $5,6 \mathrm{~h} \cdot 27^{\prime}$ in the Morning, ©, invifible.

1774	d^{\prime}		d	
	3 8.23	110520 m		5.11142
	23	10004 m	1\% 9	2406002
Mar	37	100451 a	18 i 50 m	25
	110	09074 m	16400 a	24
	19	080612	16	2300
	10 29 29		141	
	28755 m	06108 m	13	2104
Aug.	26324 a	404	12	19
	- 55 m	3 00 221	10	- 4
	- 37 a	$\left\{\begin{array}{llll}02 & 09 & 54 \mathrm{~m} \\ 31 & 09 & 36 \mathrm{a}\end{array}\right.$	9647 a	170340 m
	18 n	30 00 18a	86	150324
Dec.	2216	300510	79	130607

In 1744, Four Ecliples: $1 \boldsymbol{f}$, Apr: 1, 9 h. $51^{\prime}(\bigcirc, A$, invif. 2d, Apr. $15,8 \mathrm{~h} \cdot 32^{\prime} \mathrm{A}$. vif, Digits 8, on the upper fide : 3d, Sept. 25 , h. 18^{\prime}, M. (O invilible: $4^{t h}$, OEt. 10 , oh. 4^{8}. A.) invifible.

45	$\begin{gathered} \mathrm{Ful} \\ \mathrm{~d} \mathrm{~h} \end{gathered}$	d h		
	60210	13	21235	231131 a
	0827	12524 a	20	2706
Mar	0321 m	14015 a	22.52 m	291145 m
	33	13521 m	20	280308 m
M	50004 a	12. 9	20640 m	2703 36a
	400	II 927 m	18	26 OI
	31019 m	10715 a	18033 m	250922 m
	1062	$0930 \% \mathrm{~m}$	16823 m	1305
	2910	07 II		22 OI
	2807	06	14	211049 m
	27068	05 430 m	12	190940 a
	26072	3	12137 m	191031 m

In 174^{5}, Two Eclipfes, both of \odot, invifible; 1ff, March $22,2 \mathrm{~h} .52$, morn. 2d, Sept. 14, $5 \mathrm{~h} .2^{\prime}$ aft. The 3 's Latitude is North in both, vie in the fret, $2!10^{\prime \prime}$; in the othere $80^{\prime \prime}$.

Time's Telefcope.

In 1746, Four Ecliples: 1f, Feb. 24, $3 \mathrm{~h} 04 \mathrm{aft} . \mathrm{D}$ vilib.e 9 Digits on the lower fide : $2 d$, Naich 11, $2 \mathrm{~h} .54^{\prime}$, © , enuria, invifible: 3 d , Auguft $2 \mathrm{c}, \mathrm{ch} .5^{\prime}$ morn, D vifble, 6 Digirs on the upper fide : 4 th, Sept. 4 gh. 22'. (O, invifible.

In 1747, Six Eclipies: Finf, $7 \mathrm{an} .29,2$ h. 52^{\prime} aft. \odot, invif. 2d, Feb. 14. 5 h. 2 ' morn.), vilible and toral, 20 Digirs. $3 d$, Ecb. 28, 5 h. I 8' morn, © , invif. Ath, 7^{\prime} uly 26,8 h. 50^{\prime} morn, Sun, invif. Ath, Aug. $9,8 \mathrm{~h} .52^{\prime} \mathrm{morn}$, invifo 6th, Aug. 24 , 2h. 281 aft. O, invilible, by reaion of the Moon's great South Latitude I $^{\circ} 25^{\prime} 52^{\prime \prime}$ 。

1748	$\begin{array}{ll} \text { Full } \\ \text { d } . h \end{array}$	$d h!$		$\begin{aligned} & \text { Finft } Q+1 \\ & \cdot d \text { h } \end{aligned}$
	1	11713 a	1903	2600
	3	m	170255 a	24
vi	845 m	10535 a	180259 m	2) 1157 m
4	8	9541 m	$160356 a$	241053 m
	$\begin{array}{lrrl}1 & 9 & 46 \mathrm{~m} \\ 3011 & 20 \mathrm{a}\end{array}$	8632 a	1605294	23
	$30129 a$	7.8	140754 a	m
fuly	29452 m	7102	141019 m	2
lug.	$2783+\mathrm{a}$	5 151a	130244 m	m
en.	261122 m	$4 \quad 544 \mathrm{~m}$	110527 a	190225 \%
Det.	26157 m	818 a	110722 m	180417 a
,	$242=a$	210	090803 a	170500 m
jec.	$24211 \mathrm{~m}\{$		09 o8 ug m	I 60503 a

In 1748, Four Ecliples: 1f, fan. 19, $3 \mathrm{k} .25^{\prime} \mathrm{m} . \mathcal{O}$, invif. 2d, Feb 3, í h. 49 m.), invif. 3d, fuly 14, roh. 30 ! m. ©, vifible 10 Digits: 4 th, Fuly 28, in ho 33^{\prime}, a D, vifible 5 Digits on the lower fide; the ©'s Obfurity is on the upper fide

1749	New Moon d h 1	$\begin{gathered} \text { Firft Quar. } \\ d \mathrm{~h} \end{gathered}$	Full Moon d h	$\left\lvert\, \begin{gathered} \text { Laft Quar. } \\ d \mathrm{~h} \end{gathered}\right.$
Jan.	70713 a	15413 m	220108	291005 a
Febr	$6 \quad 0537 \mathrm{~m}$	13235 a	20 Il $30 . a$	28828 m
Mar.	$7 \quad 0332 \mathrm{a}$	15027 m	220922 m	29615 a
Apr.	6 O114m	131012 m	200705 a	23404 m
May	51129 m	12828 a	200525 m	$27216 a$
June	3 1125a	11823 m	I1 0520 a	$26 \quad 218 \mathrm{~m}$
July	30042 a	10940 a	180632 m	25329 a
Aug.	$\begin{array}{llllll}2 & 0 & 3 & 3 & 8 \\ 31 & 0 & 7 & 41 \mathrm{a}\end{array}$	9035 a	1609302	24622 m
Scpt	$300004 a$	8431 m	$150120 a$	$221018 a$
Oct.	300417 m	$7815 a$	150602 m	22300 E
Nov	280756 a	6114 a	$1310.10 a$	
Dec.	280941 m	6454 m	13 or joa	201045 a

In 1749, Five Eclipfes: 1ft, Fan, 7, 7 h. 17^{\prime} a. ©, invifible $2 d, \mathfrak{7}$ une $\left.29,9 \mathrm{~h} \cdot 34^{\prime}, \mathrm{m} \cdot\right)$, invifible; 3d, fuly 3 , o h. 3' a of (©), invif. 4 th, Dec. 12, 8 h. 8^{\prime} a. $)$ vifible 5 Digits on the lower fide ; 5 th, Dec. $28,9 \mathrm{~h} .12 \mathrm{~m} \cdot \mathrm{~m}$. (o) vifible, 7 Digits on the lower fide.

Time's Telefcope.

1750	Firlt Qu.	$\begin{aligned} & \text { Full? } \\ & \text { d.h. } \end{aligned}$	d.h.	New) d. h .
an.	4640 a.	123 38 m	19030 a	26938 a
eb.	3636 m .	10327 a	18020 m	25943 mi
Mar,	44.39 a .	12 1237 m	201032 m	25 420 a
Ap	${ }_{3}^{3} 1120 \mathrm{~m}$.	101015 m	17715 a	$25 \quad 0 \quad 37 \mathrm{~m}$
May		9630 a	17 \% 325 m	24913 m
une	30411 m .	312 m	150102	22718 a
uly	30345 a .	1 oa	$1410{ }^{10}$	22648 m
ug	28534 m .	7041 m	14936 m	$20836 a$
	26918 a .	4233 a	111130a	$19020 a$
	2635 a	4615 m		
Jov	${ }^{2} 5730 \mathrm{a}$.	306 a	1099 m	$18^{*}=33 \mathrm{~m}$
	25313 m .	3430 m	$10127 a \mid$	17614 a

In 1750, Five Eclipfes, 1 ft , Of the D vif. June 8, $9 \mathrm{~h} .9^{\prime}$ a. 6 Digits, Total: $2 d$, of the \oplus, \mathcal{F} une 22, $6 \mathrm{~h} .5 \mathrm{I}^{\prime}$ a. invil. d, of the © , Nor. 18, 1 h. 19^{\prime} invif. 4th, of the 2 . Dec. 2 , h. $32^{\prime} \mathrm{m}$. Toral and Vifible: 5th, of the (0, Dec. 17, 6 h 4^{4}, a invifible.

751	$\begin{gathered} \text { Ful } \\ \text { d. } \mathrm{h} . \\ \hline \end{gathered}$	$\begin{aligned} & \text { Laft Qu. } \\ & \text { d. b. } \end{aligned}$	New) d.h.	Firft Qu. d. h.
$\text { an. }\}$	$\begin{array}{rl} 2 & 013 \mathrm{a} \\ 31 & 400 \mathrm{~m} \end{array}$	$8910 a$	161000 m	2370
eb.		$\begin{array}{llll}7 & 1 & 05 a\end{array}$	141035 a	22732 m
	$\begin{array}{cc} 1 & 429 \mathrm{a} \\ 3 \mathrm{~B} & 22 \mathrm{~m} \end{array}$	8 I 24 m	16849 m	$23546 a$
	291130 m	$7 \quad 1139 \mathrm{~m}$	14533 a	22231 m
	28644 a	6828 a	14049 m	21947 m
	27 27 26 2 10.47 m	$5{ }_{5}^{5} 364080 \mathrm{~m}$	12850 m	195502
	261030 m	4 II 42 m	$11+32 \mathrm{a}$	1913 mm
	$\begin{array}{ll}24 & 8 \\ 2 & 20 a\end{array}$	2726 a	10226 m	171122 m
ep.	$23837 \mathrm{~m}\{$	$\begin{array}{lll}1 & 5 & 15 \\ 30 & 5 \\ 3 & 28 a\end{array}$	8242 a	151140 a
	23014 m	30909 m	86 IIm	
	$21608 a$	29307 mm	7 0 17m	14916 m
	II 1488	281047 a		14 II 50 m

In 175:, Fout Eclipfes: sft, ©, May 4 , oh. $5 \mathrm{r}^{\prime}$, m. invil. D, Liay 29, I h. $57^{\prime}, \mathrm{m}$. vifible, 10 dig. on the lower fide; ©, Nov, 7, oh. $43^{\prime} \mathrm{m}$. invif. 4th, of the , Nor. 21 , gh. a, vifible, 8 digits on the upperfide.

Times. Telofcope.

52	$\begin{gathered} \mathrm{New}, \mathrm{~J} \\ \mathrm{~d}, \end{gathered}$	${ }^{\text {dirit }} \mathrm{h}$ Qu.	d	d h
	5	21120	20	$-10520 \mathrm{a}$
	749 m	110449 a	19 145	
Max.	4 P0.13a	120713 m	19412 a	270110 m
	3. 854 m	1005 53a	$18250 \mathrm{~m} / 2$	2311384
May	$3^{2}-543 a$	100241 m	1\% II $40 \mathrm{~m}^{2}$	2408.372
June	$\left\lvert\, \begin{array}{lll}8 & 1 & 24 \\ 30 & 8 & 09 \mathrm{~m}\end{array}\right.$	081020 m	15	23.041 jm
Y	29-321a	090509 a	12.206 m	21110 m
Aug	28 O 04^{4}	06	13919 m	
	2611 rgm	0409		19
0	26 2. 01 m	0308	11505 m	
Nov.	24 \% 33 a	$02 \times 101 \mathrm{~m}$	98 ça	19.0504 m
c.	233 a \{	$\begin{aligned} & 020430 \mathrm{~m} \\ & 3 \mathrm{I} \cdot 1 \mathrm{It}-52 \mathrm{a} \end{aligned}$	925 a 1	1610223

In 1752, Two Eclipfes, both of the Sun, and invfible: The nf, May 2, ;h. 45^{\prime} a. $2 d, 0$. 26, I h. $54^{\prime}, \mathrm{m}$.

43	h	d h	,	
	-	150540 a	950 m	300650 a
	70348 m	1400	22	2900
Mar	80953 a	166640 m	23706 a \{	
	\% 04 a	1480	22748 m	
May	7 O1 43 m	14.10	21	2902
	$3112+m$	8	20187	2710
	40717 a	12	19	2605
tug.	30210 m	1011	I9 3201	
	$\begin{array}{ll}2 & 0 \\ 300 & 13 \\ 300 & 12\end{array}$	0906	1510	
	300429 m 10	- 8 or	151030 m	
	290542 m	06 or	14945 m	2106
Dec.	230937 ma	0600	13.3	2100

In 1753, Four Eclipfes ift; Apr, $6,8 \mathrm{~h} .20^{\prime} \mathrm{a}, \mathrm{J}$, part vifble, 5 Dipit; ; $2 d$, Apr, $22,7 \mathrm{~h}, 77^{6} \mathrm{~m}$. ©, invif. 3d OEt . 1. ? h. $36^{\prime} \mathrm{m}$. D. invif. fth, OAt $15,9 \mathrm{~h} .59^{\prime} \mathrm{m}$. ©, vifible, 8 Digits on the lown ide.

	d	d. h.	d
	6	129.22 m 19	2703
Feb.	3	101158 a , 18 8 56 m	25
Mar	52.45 m	12 1006a $20^{\circ} 7106 \mathrm{~m}$	290404 a
A_{1}	41	II 2 30a 18 11 302	2608.26 m
May	3	11415 m 18 I 13a	25
June	2707	9324 a 17 o 24 m	24
	$\begin{array}{lll}1 & 6 & 5 a \\ 31 & 3 & 04 \\ 1 & 1\end{array}$	9009 mic 901 m	2 2\% 06
	29 Ir 13 n	m. 14	220115 m
Sepr	27.7	5416 al 1314 m	2
O	27.403 m	5 I (19m 12.1010 m	1907
N	25.210	$31120 \mathrm{~m} / 10819$	
Dec.	$25^{2} 02$	$2.155 a 108$	

In 1754, Six Eclipfes: 1ft, Mar. 12, 5 h. 52^{\prime} a. \odot, invif. d, Mar. 27, 4 h. 10'm. D, invif; 3d, Mar. 11, $10 \mathrm{~h} .17^{\prime} \mathrm{m}$. jun, invif. 4 th, Sept. 5, 1h. 13^{\prime} a. ©, invif. sth, Sepi. 20, h. $6^{\prime} \mathrm{m}$. D, invif. 6 th, Oct. 3 , I h. $3 \mathrm{I}^{\prime}$ a. \bigcirc, invif.

	d.	d.h		Lait Qu. d. h.
	$\begin{array}{ll} 1 & 043 \mathrm{a} \\ 3 \mathrm{x} & 5.06 \mathrm{~m} . \end{array}$	8942 a .	$16 \quad 637$	m.
	$\begin{array}{r} 1102 \\ 313 \end{array}$	9719 m .	16415 m	24110 m .
	308	8:0 40 mi.	15936 m .	6
	291022 a .	75	152	211 orm
	281058 m	65	13217 m	2011ro3.
	271010 a .	57	13450 a	20
	26804 m .	4710	II 405 m	19102 m
	24.540 a	25	10201 a .	
	24313 m 。	240 m	91135 m	16831 a
	$12 \quad 103{ }^{2}$		$89093 i$	16.905 m .
			7	46

 d, Mar. 17, oh. $12^{\prime} \mathrm{m}$: 2 , rifible; y Migirs: 3 diayg. 26 ,

1756			d. h.	d. h.
	56.02 a	I		析
	4620 m	11	19222 m	2611
Mas	4	12	19	272
	311	10	18841 m	255
	3	1011	1	2,8,
e	15	92	16237 a	1131
	$\begin{array}{r} 183 \\ 3011 \end{array}$	8 5 20 a	16503 m	232
	290	7	14636 a	22325
	28107 m	59	13. 79 m	4
	2701	510	12719 a	318
	2511	39	11	1825 sa
	25927 mm	3805	103	- 30

In 1756. Two Eclipfes of the Sun, and both invitible: $1 f$, Feb. 19, 1h. $48^{\prime} \mathrm{m} .2 \mathrm{~d}$, Aug. 14, 7 h . 12' a.

957	$\begin{aligned} & \text { Laft } Q u . \\ & \text { d.h. } \end{aligned}$	$\begin{gathered} \text { New, } \\ \mathrm{d} \mathrm{~h} \\ \hline \end{gathered}$	d	d
$\sqrt{\text { Jan }}$ \{	$3 \times 3 a$	9 obom	16900 a	24602 m
E		7 I $3^{\text {a }}$	1410.03 a	2707 m
Mar ${ }^{\text {S }}$	$\begin{array}{ccc}14 & 2 \mathrm{a} \\ 3 \mathrm{l} & 3 & 10 \mathrm{~m}\end{array}$	$9034^{\text {in }}$	16914 m	23613 a
	293 :5a	7 O 28a	14926 a	22624 m
May	29430 m	7142	141040 m	$21736 a$
June	2800 m	5404 a	13. 602 m	20301
July	27.732 m	5640 m	12338	20.035 m
Aug	26127 m	$31025 a$	II. 742 m	18 4.32a
Sepr	24433 a	$2 \mathrm{~L} 47^{\text {a }}$	091045 a	17.7 .37 m
Oti	$24741 \mathrm{~m}\{$	$\begin{array}{lll}2 & 4 & 48 \mathrm{~m} \\ 316 & 00 \mathrm{a}\end{array}$	09147 a	$161046 a$
	2291 a	$308 \quad 04 . \mathrm{m}$	08701 m	$15: 0.02 \mathrm{a}$
Dec'	122100 m	296112	$07 \quad 504 a$	$15 \quad 202 \mathrm{~m}$

In 1957, Five Ecliples: $1 / t$, fan. 24,7 h. $6^{\prime} \mathrm{m}$, part vif. \because Digits on the upper lide : $2 d, F e b .7$, Ih. 2^{\prime} a. ©, invif. 3d, fuly I9, 11 h. 53^{\prime} a. D, vif. II $\frac{1}{2}$ Digits: 4 th, Aug, 3, 1oh. 45^{\prime} a. © , invif. 5 th, Dec, 29, 6 ho In'a. ©, invifible.

Time's Telefcope.

17)8	$\begin{aligned} & \text { Mrit Qu. } \\ & i \mathrm{~h} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Fuli, } \\ d h \end{gathered}$	Lait	New d h
Jull	63 in n	13 -10a	20904 a	$\overline{284} \overline{3611}$
Feb.	4 I 3512	II 1030 a	1.9725 m	26 - 30 a
Mar.	21 a	13617 m	20312 a	27 Ir Oo,
Apr.	4800 m	11505 a	19.904 m	26 mr 40 m
May	840 a	1 L 53 m	$18=27 \mathrm{a}$	251102 a
June	802 m	095 ora	17.200 m	24855 m
July $\{$	$\begin{array}{llll}1 & 5 & 5+\mathrm{a} \\ \mathbf{1} & 8 & 0 & \mathrm{~m}\end{array}$	09250 a	16 II 46 m	231103 a
Aug.	299 46a	07502 a	15201 m	
Se t .	$2 \mathrm{2} ; 06 \mathrm{~m}$	10664202	13 3 38 a	128496 21
Oct.	281020 m	O5 205 m	131104 m	2 I 120 m
Nov. Der	27 I 50 m	0478 a	12414 m	19430 a
	4	41147 m	11741 a	19729 m

In 1758, Fise tecimles: 1ft, Fan. 13, 6h. 13 m. D. part vifible and rotal, Ligiss $2 \mathrm{I}: 2 d, \mathfrak{F} a n .28,4 \mathrm{~h} \cdot 36^{\prime} \mathrm{m}$. (0, invil. 3d, Fune 24, 8 h 55 (.), invif. 4 th, Fuly 9, 4h. 44^{\prime} a. D, inv. 5 th, Dec. 19, 7h, $29^{\prime} \mathrm{m}$. (3), invifible.

	$\underset{d . h}{\text { Full }}$	$\underset{d a}{\text { Laft }} \mathrm{Qa} .$	d h	$d h \quad 1$
		10		
	Or Or 51.		m	23
d	$021104 a$	100803 m	17	
A		0809	1510	
	30	0.	m	
June	28	06	8 m	21
-	270848 a		13254 m	1
Aug.	261036 m	040546 m	50	191
	250050 m	02	10656 m	
	240441 a	02 c 945 m	091052 a	
	23 II 32 ms		085	162
	330810 m	O0508	2	

In 1759, Three Eclipfes: 1 $\mathcal{1}, \mathfrak{F}$ an. 2, 7 h. $46^{\prime} \mathrm{m}$.). Parc vigble 7 Digits on the lower fide: $2 d$, fune $3,5 h .23^{\prime}$ a. Sun invir. b; reanon of the 3 's South Latitude 39': 3 d, Dec. $8,2 \mathrm{~h}$. 14^{\prime} Sun, invilide.

1760	$\text { New, }{ }^{\text {Firlt } \mathrm{Qu}} \mathrm{~d}$	$\begin{aligned} & \text { Full } 2 \\ & \mathrm{fh} \end{aligned}$	d
Jin'	07624 m 14324a	2200.20 m	29 915 m
Feb'	05836 a 13.532m	200227 a	271118 a
Mar'	06738 m 13435 a	210130 m	281028 m
Apr ${ }^{\text {c }}$	04534 a 12:233m	19 1126m	26822 a
May	$04053 \mathrm{~m} / 11951 \mathrm{~m}$	180647 a	26341 m
June	02719 m 9.419 a	170114 m	241010 m
$\text { July } 5$	$\left.\begin{array}{llll}01 & 400 \mathrm{a} \\ 31 & 1 & 14 \mathrm{~m}\end{array}\right\|^{9} \quad 100 \mathrm{~m}$	161000 m	437002
Aug'	$29012 \mathrm{a} 710 \times 1 \mathrm{~m}$	1407102	22.409 m
Sept'	$28252 \mathrm{~m} / 5 \quad 912 \mathrm{a}$	130604 m	$20304 \pm$
Oct	27702 a 4 1150a	120846 m	19 ¢ 40 a
Nov ${ }^{\circ}$	$26202 \mathrm{a} \quad 4 \quad 402 \mathrm{~m}$	IIOICOa	181001 a
Dec ${ }^{\prime}$	267.36 m 3.1100 a	110801	18 50aa

In 1760, Four Eclipfes: 1ft, May 18, 9h, 35^{\prime} a.), vifible 1 Digit: 2d, fune 2, $9 \mathrm{~h} .22^{\prime} \mathrm{m}$. ©), vifible 5, Digits on the lower fide: 3 d, Nov. $11,9 \mathrm{~h} 1 \mathrm{I}^{\prime}$ a. D, vifible $6 \frac{3}{3}$ Digits on the upper fide: $4^{t h}$, Nov. 26, 2:h. 2^{\prime} a. ©, invifible.

61	d:h	d.h.	Lalt	
	$02.436 a$	5.m	1710	25
	01. 0512		16	
Mar.	03.408 m	10-107a	17	25.0812 m
	Or 512 a	09	16 II .09 m	2
M	91: 2.36 m	08	a	23 O1 24 m
f1	28. 5332			
	$28 \quad 046 \mathrm{~m}$	06.2 21 m	13	20
Aug.	26.750 m		11	18
	$24 \quad 632 \mathrm{a}$	02	09	19
	$44728 \mathrm{~m}$	$\begin{array}{lll} 02 & 3.30 \mathrm{~m} \\ 3 \mathrm{I} & 4.26 \mathrm{a} \end{array}$	99	16 10.29.a
	II 15a	31. 810 m	08	
	$6 \mathrm{O}_{2} \mathrm{~m}$	130300 a	9\%	509

In 1761 , Six Eclipfes: ift, Apr. 23, $5 \mathrm{~h} .40^{\prime} \mathrm{m} . \odot$, invif. ad, May 7, 10 h. 2' a.), viliole, total: 3d, May 23, 1 h. 24^{\prime} m. ©, invil. 4 th, Oct. 16, roh. 39 at $\mathrm{O}_{\text {, invil. } 5 \mathrm{th}, \text { Nov. } 1 \text {, }}$ \$1.h. $43^{\prime} \mathrm{m} . \mathrm{B}$, invif. σ h, Nov. $15,2 \mathrm{~h} \cdot 15^{\prime}, \mathrm{a}$, (), juvif. Moon's Lat. I 0 S.

In 1758, Four Ecliples: if. Apr. $13,5 \mathrm{~h} .281 \mathrm{~m} .0$, invif. ed, Apr. $27,3 \mathrm{~h} .361 \mathrm{~m}$.), vilible 10 Digits on the upper ide : $3 d$, Oct. $6,8 \mathrm{~h} .12^{\prime} \mathrm{m}$. ©, vifible 6 Digits on the upper ide : $4 t h$, OAf. $2 \mathrm{I}, 9 \mathrm{~h}$. II! a. D, visible 7 Digits on the lower ide.

1763
jan. Feb. Mar Apr May Tune July Aug. Sept. Oct. Nov. Dec.

In 1763. Two Ecliples, both of the Sun, invifible: oft, Apr. 2, $10 \mathrm{~h} .5^{\prime} \mathrm{m}$. the other is Sept. 26, Th. $5^{\prime} \mathrm{m}$. Moon's Lat. is South in the firs, North in the fecond.

Time's Telefcope.

The Invifible Eclipfes made Vifible ; Or the Places Where, and the Iime When, Calculated; in which all thefe Eclipfes may be feen that are Invifible to any part of Great Britain.

THE Learner muft obferve, when he finds the Longitude of any of the following Places to be Eaft from London, the Time of the Eclipfe happens fo much fooner there than it does at London: If Weft, fo much later.
1734. April 22, 4^{\prime} paft 10 in the Forenoon, the Sun will be Totally Eclipfed; in Taurus 12 deg. feen by all Africa, in Brazil in South America: It will be then Vertical to the Etbiopbian Ocean, Latitude 15 degrees North, Longitude 30 degrees Eaft from London; which gives 2 hours in time. This Eclipfe will not be confpicuous to any part of Great Britain or Ireland, by reafon of the Moon's fmall North Latitude $2^{\prime} 45^{\prime \prime}$: It is alfo Central.

Oefuber 15 , at 20^{\prime} paft 6 at Night the Sun will be Totally Eclipfed in Scorpio 3 deg. it will then be Vifible and Vertical to Mardetrur, or the great Souchern Ocean, Weft of South America; Latitude 13 deg. South, Longitude Weft from London, 90 degrees, 6 Hours in Time; therefore I conclude, it will not be 60^{\prime} Clock there, 'till it is Midnight at Londor.

1735, March 27, 41^{\prime} paft io Morning the Moon is Eclipfed in Libra 17 deg. 5 digits on the North fide, Vifible to Mardelzur, to the Northern Parts of America, to the Eaftern Parts of Cbina, to the Fapan-Ifles, and the Illands adjacent in the Eaft.

April in, near Midnight, the Sun is Eclipfed in Taurus 2 degrees, and is at that time Vertical near Weft Padro in the great Ocean, between America and Cbina: 8 Digits on the South fide Lat. 11 deg. North Longitude from London 180 deg. Eaft or Weft, it being the half of the Earth's Circumference 12 h . in Time.

OEtober 5, at 40^{\prime} paft 2 Morning, the Sun is Eclipfed in Libra, 22 deg. 9 . Digits on the North fide, Vifible and Vertical to the Sea between Terra-de-Papas and Nerw Holland in 9 deg. South Latitude, and Longitude 140° Eaft from London, which gives 9 h. 20 !.

1736, March 1, at 3, Afternoon the Sun is Eclipfed in Pifces, 22 degrees, 2 Digits on the North fide; then Vertical to Brazil in America, Latitude South 3 deg. Longitade Weft $50^{\circ}, 3$ Hours 20^{\prime}.

Mawc 3 3iv, at 7, in the Morning, the Sun is Eclipfed in Aries, 22 degrees. It will be but a very imall Deliquium on the South fide of the Sun, Vifible in the Antartic Circle, Vertical to the Southern parts of the Eaft Indies near Calecut; Latitude 14 deg. North, Longitude 77 deg. Eaft, 5 h 3\% in Time.

Auguft 25, at 9 , in the Morning the Sun will be Eclipfed in Virgo, 13 deg. near 3 Digits on the South fide. The Sun will be then Vertical to AbyJimia, not far from the South Entrance into the Red Sea; but the Eclipfe will only be feen in the Lat. 64 deg. South, that is, in the uknown Sea, and Longitude 40 deg . Eaft, 2 h. 40^{\prime}.

September 23, at 44^{\prime} paft 5 , in the Afternoon the Sun is Eclipfed in Libra, 11 deg. I Digit and a half, feen in the Latitude 66 North, Longitude Weft 9.5, $6 \mathrm{~h} .20^{\prime}$. The Sun is then Vertical to Mardelzur.

1737, March 5, at 16^{\prime}. pat 4 , in the Afternoon, the Moon is Eclipfed in Virgo, 25 ${ }^{\circ}$. 6 Digits on the South fide; feen by all Afia, the Eaftern Parts of Africa, and Northern Parts of Europe, Vertical to the Southern Parts of Borneo, Latitude 5 deg . North Longitude 11° Eaft, 7 Hours 40^{\prime}.

Auguft 15 , at 1 , in the Morning, the Sun is Eclipfed in Virgo, 3°. This will be no where Total; 'The Sun is Vertical to the Ocean, Eaft of the Pbilippine Iflands; and in the Sea between Van Diemerrs Ifles, and Zealandia Nova, the Eclipfe will be moft Confpicuous.

1738, February 7, at 4, in the Afternoon, the Sun is Eclipfed in 29°. Aquarius, and is then Vertical to the Country of the Amazons in South America. It will be a great Eclipfe in it felf; for all the Penumbra will fall within the Earth's Disk. It will be very confpicuous to the Caribbe Iflands and Places adjacent, about the Latitude of 14 degrees North Longitude 60 deg . Weft, 4 Hours.

1739, Fanuary 28, at 4, in the Morning, the Sun is Eclipled in Aquarius, 19 deg. 9 Digits. The Sun will be then Vertical a little to the Welt of Hollandia Nova, Latitude 45 deg. South, Longitude 110 deg . Eaft, 7 h. 20^{\prime}.

Fuly 9. at 4, the Afternoon, the Moon is Eclipfed in Capricornus, 27 degrees; the is Vertical to the Middle of Hollandia Nova, Lat. 20° South, Longitude 126 Eaft, 8 h. 24'. Digits on the South fide.

I740, Fanuary 17, at 8 at Night, the Sun is Eclipfed in Aquarius 8 degrees, one Digit on the South fide, Vertical to Mardicuur, Latitude 18 South, Longitude 120 Weft, 8 Hours.

Fune 13, at 2 in the Morning, the Sun is Eclipfed in Cancer, 3 Degrees, Vertical to the Oriental Sea, Eaft of Cbina, 6 Digits on the South fide, Latitude 23° North, Longitude 171° I I h. 16^{\prime} 。

Fune 28, at 9 in the Forenoon, the Moon is Eclipfed in 17 Degrees of Capricom, 3 Digits, feen by almof all America, Vertical to Mardelzur, Latitude 22 Degrees South, Longitude 124 Weft, 8 Hours, 16 min .

December 7 , at It at Night, the Sun is Eclipfed in Sagittary 27 Degrees, and is then Vertical to the great Southern Ocean, Lat. 23 South, Long. 170 Weft, is h. 40^{\prime}.
$1-41$, 7 une 2, at 10 in the Morning, the Sun is Eclipfed in Gemini, 22 Degrees, then Vertical to the Southern Parts of Egypt, Latitude 22 North, Longitude 33 Eaft, 2 h. 12 '. This Eclipfe is Total, and will be feen by the Etbiopians, and the adjacent Places.

Nowember 27, at 6 in the Morning, the Sun is Eclipfed 16 Degrees in Sagittary. This will be a very great Ecliple, Total and Central, feen in Cbiza and all the Eaftern Countries The Sun is then Vertical to the great unknown Ocean, Eaft of Madagafcar, Latitude 23 South, Longitude 80° Eaft, 5 h. 20?

1742 , May 8, near Noon, the Moon is Eclipfed in Scorpio 28 Degrees, 4 Digits on the South fide. She is then Vertical to the great unknown Ocean, South of Mardelzir, Latitude 20 Degrees South, Longitude 280 Degr. 12 h .

May 22, at 12 at Night, the Sun will be Totally aclipfed in Gemini 12 Degrees, Vifible to our Antiodes, and to all that unknown Ocean.
November 1, at Noon, the Moon is Eclipfed in raurus, 20 Degrees, 3 Digits on the North fide, Verical to the great Ocean between Cbiva and America, where it will be Vifible, and to all the Eaftern Iflands reyond Cbina, to California, and fome Parts of North america.
November 16, at 6 in the Morning, the Sun is Elipfed in Sagittary 5 Degrees, Vifible and Vertical to he Oriental Ocean. This Eclipfe is partial, part of he Penumbra only falling within the Earth's Disk.

1743, April 13, at 9 in the Morning, the Sun is Eclipfed in Taurus 4 Degrees, 2 Digits, Vifible to the South Sea beyond the Cape of Good Hope, Vertical to the Middle of the Abifine Land, to the Weft of the Red Sea.

April 27, at 3 in the Afternoon, the Moon is Totally Eclipfed in Scorpio, 18 Degrees, Vertical to Hok landia Nova, Vifible to Perria, Eaft India, Cbina, and the Jhes adjacent, to Tartary, \&c.

May 12, at 6 at Night, the Sun is Eclipfed in Gemisii, 2 Degrees, 3 Digits on the North fide. The Sun then Vertical to the Bay of Honduras, Weft of $7 a-$ maica, moftly feen in the Northern Parts of Amesica.

OEFober 6, near 3 in the Afternoon, the Sun is Eclipfed in Libra 24 Degrees, near 2 Digits on the North fide, then Vertical to Brafil in America, moftly feen in North America.

November 5, at 6 in the Morning, the Sun is Eclipfed in Scorpio 23 Degrees, then Vertical to the Oriental Ocean, South Weft of Sumatra; it will be but a very fmall Eclipfe, and feen about the Antartic Circle.

1744, April 1 , near ro at Night, the Sun is Eclip. fed in 23 Degrees of Aries, about 6 Digits on the South fide, feen in the great Ocean Weit of America, the Sun Vertical in Latitude 9, North, Longitude 142 Weft, 9 h. 281.

September 25 , at I in the Morning, the Sun is Edipfed in 13 Degrees of Libra, 7 Digits on the North fide, Vifible in the Ocean Eaft of Tartary, Vertical to Mardelzur, Latitude 5 South, Longitude 142 Eaft, $9 \mathrm{~h} .20^{\prime}$.

OEfober 10, a little paft Noon, the Moon is Eclipfed 6 Digits on the South fide in Aries 28 Degrees, Vertical to the great Ocean Eaft of China, in II Degrees North Latitude, and 173 Degrees Eaft Longitude, IIh. 3^{21}. It will be Vlfible to part of Eaft India, China, $\mathcal{F a p a n}$, Tartary, to all the great Ocean between thofe Places and America, where fome part of the North Weft of that Continent will fee it.

1745, March 22, near 3 in the Morning, the Sun will fuffer a great Eclipfe in Aries, iz Degrees, Vifible in Cbina, and all the adjacent Places. The Sun is Vertical to the Pbilippine Iflands, Latitude 5 Degrees North, Longitude 135 Eaft, 9 h .

September 14, at 5 in the Afternoon, the Sun will be Totally Eclipfed in Libra 2 Degrees, 7 Digits on the South fide. The Sun is then Vertical to the North Parts of Peru in America, Latitude o Degr. 33^{\prime}, Longitude 76 Weft, $5 \mathrm{~h} .8^{\prime}$; in the Northern Parts of which Country it will be Total.

1746, February 24, at 44^{\prime} paft 3 in the Afternoon, the Moon is Eclipfed 9 Digits on the South fide, in Virgo 17 Degr . She is then Vertical to the Indian Sea, between Ceylon and Sumatra, in Latitude 5 Degrees North, Longitude 90 Degr. Eaft, 6 h. It will be Vifible

Time's Ielefcope.

fible to all Afia, part of Africa, and part of Europe, about 6 Degrees Eaft from London; the Moon will Rife as the Eclipfe Ends.

March II, at ${ }_{3}$ in the Morning the Sun is Eclipfed 6 Digits in Aries, I Degree; it will be moft Confpia cuous on the Eaft Borders of Fiartary.

September 4, at 9 in the Morning the Sun is 5 Digits Eclipied on the South fide, in Virgo 22 Degrees; Vertical or directly over the Eaftern Parts of Ethiopia, Latitude $3^{\text {e }}$ North, Longitude 5 I Eaft, 3 h. 24^{\prime}.

1747, Fanuary 29, at 3 in the Afternoon the Sun will be Eclipfed in Aquarius, 2x Degrees, Vertical to Brazit, Latitude i4. Degrees South, Longitude 50 Degrees Weft, 3 h. 20'.

This will be a very fmall Eclipfe, Vifible near the Antartic Circle.

Febriary 28, at 5 in the Morning the Sun is I Digit Eclipled on the North fide, in Pijces, 20 Degrees; he is then Vertical to the Indian Sea between Bornio and Fava, Lat. 4 Degrees South, Long. in Eaft, 7 h. 20!. Feen in Greeiland and Places adjacent.

Fuly 26, at 50^{\prime}. palt 8 in the Morning the Sinn is x Digit Eclipfed in Leo r3 Degrees, Vertical to Arabia Felix, Latitude 17 Degrees, Longitude 41 Degrees Eaft, 3 h . Vifible in the North frozen Sea, Latitude 80 Degrees.

Augut 9, at ro in the Forenoon, the Moon is Totally Eclipled, thus, 17 Digits, in 27 Degrees Aquarius; The is then Vertical to Mardelzur, Latitude I2 Degrees South, Longitude 146 Degrees Weft, 9 h . 44'. Vifible to the Fapan and Pbilippine Iflands, to all the Weft Ocean between. Afia and America, as alfo to all the Weftern Parts of America from South to North, including Famaica, Cuba, Carolina and Vir-a ginia; the Horizon of the Vifible Disk paffeth thro Penjivania, \&c.
/ruff 24, at 9 at Night the Sun is Ecliped in Virgo, 12 Degrees. This is a very fmall Eclipfe, and only feen in the unknown Southern Parts of the World.

1748, Fanuary 19, at 3 in the Morning the Sun is Eclipied 5 Digits on the South fide, in ro Degrees Aquarius, Vertical then to the Eaftern Parts of Hollandia Nova, Latitude' 18 Degrees South, 135 Eaft, 9 h . Vifible only to the unknown Southern Seas.
February 3, near Noon the Moon is Eclipfed in Leo 25 Degrees, five Digits on the North fide; fhe is Vertical to the great Ocean Eaft of fapan, Latitude ${ }_{3} 3$ Degrees North, Longitude 180 Degrees, 12 h . feen in Cbina, in part of qartary, and in the North Weft Parts of America.

1749, Fanuary 7, at 7 at Night, the Sun is Eclipfed, fcarce one Digit, in Capricornus 29 degrees. Seen in the Northern Parts of America.

Fune 19, between 9 and 10 in the Forenoon, the Moon is Eclipfed, but one Quarter of a Digit. It may be feen at the Eaftern lillands, and almoft all America.
Fuly 3, at $3 \mathrm{x}^{\prime}$ paft Noon the Sun is Eclipfed near so Digits on the South fide, in Cakcer, 22 degrees; Vertical to Barbary, Latitude 22 degrees North, Longitude 7 Weft, 28:

It will be feen by thofe that Sail to Eeft India, in the Seas about the Cape of Good Hope, that is, if the Air be clear, the more Southward they fail the more digits they will fee Eclipfed.

1750, 7 une 22, at 5^{\prime}. paft 6 at Night the Sun is 6 Digits Eclipfed in Cancer, ir Degrees, Vertical to the North Weft Parts of New Spain in America. Seen in the Straits of Magellan.

November 18, at I in the Morning the Sun is E^{-} clipfed in Sagittarius 7 Degrees. It will be very fmall, fcarce worth taking Notice of, Vifible about the Antartic Pole.

December 17, at 7 at Night the Sun is Eclipfed 2 Digits on the North fide, im 7 Degrees of Capricormus, Vertical then to the Pacifick Ocean, Latitude 23 South, Longitude ros Weft, 7 h. moft feen in North Awerica.

1751, May 14, at I in the Morning the Sun is Eclipfed 7 Digits on the North fide, in Gemini, 3 Degrees; and is then Vertical to the Oriental Sea, Latitude 2 , Longitude 164^{\prime}. Eaft, 10 h. 56^{\prime}. feen only about the Artic Circle.

November 7, near I in the Morning, the Sun is Eclipfed in Scorpio, 25 Degrees; he is then Vertical to the Ocean Eaft of Nerw Holland, Latitude 19 South, Longitude 170 Degrees Eaft, $1 \times \mathrm{h} .20^{\prime}$. only Vifible in the unknown Southern Seas.

1752, May 2, at 6 at Night the Sun is Eclipfed in Taurus 23 Degrees, Vertical to the Bay of Honduras in North America, where it will be Total; and more Southerly, it will be ftill greater, to thofe 87 Degrees Weft of London.

OEFober 26, at 2 in the Morning the Sun is Eclipfed in Scorpio 14 deg. Vertical to a little Sea Eaft of Terra Carpentaria, Latitude 16 Degrees South, Longitude 148 Degrees Eaft, 9 h. 52^{\prime}, near which Place it will be Total, and very formidable to all thofe Parts.

1753, April 22, at 5 in the Morning the Sun is near 8 Digits Eclipfed on the South fide, in Taurus, I 3 Degrees, then Vertical to the Arabian Sea, Latitude 16 South, Longitude 62 Degrees Eaft, Vifible in the Oriental Ocean, to Madagafcar, \&c.

OEtober 1 , between 9 and ro in the Forencon, the Moon will be near 6 Digits Eclipfed on the South fide in Aries 9 Degrees, then Vertical to the great Ocean Weft of America, where it is Vifible, and to almoft all America.

1754, March 12, at 6 at Night the Sun is 2 Digits Eclipfed on the North fide, in Aries 3 Degrees, Vertical to a litele Sea Weft of qerra firma, Laticude 8 Degrees North, Longitude 90 Degrees Weit, 6 h. feen in North merica.

March 27 , at 4 in the Morning the Moon is Totally Eclipfed, Digits ar, Vertical to the Eaft Borders of Peru, Latitude 6 South. Longitude 70 Weft, 4 h. 40°. Vinble to all America, \&c,

Apriblx, at $x 0$ in the Formoon the Sun is 2 Digits Eclipfed on the South fide; in Taurus 2 Degrees, Vertical to the Eaftem Marts of Nigitria in Africa, Latitude r_{2} Degrees North, Longitude 30 Eaft, 2 h . Vifible only to the unknown Southern Seas.

Seprember 5 , at in the Afremoon the Sun is Ecliped in Virgo 23 Degrees. This is lefs than the foregoing Ecliple, the Sun is Vertical to the Eaftern Ocean beyond the Pbilippire lilands, Latitude 3 Degr. North, 163 Degrees Eaft ioh. 5^{2}.

September 20, at 6 in the Morning the Moon is Totally Eclipfed, 21 Digits, in Aries 8 Degrees, Vifibleto all America, Vertical to the Sea Weft of Panama in America, Latitude 3 Degrees North, Longitude 90 Degrees Weft, 6 h .

OEFober 5, at I in the Morning the Sun is Eclipfed 2 Digits on the North fide, in Libra 22 Degrees, Vertical to Mardelzur, Latitude 8 Degrees South, Longitude 130 Weft, 18 h .20 ; Vifible in the Artic Circle.

It is Remarkable this Year, that there are fix Ecliples and all Invifible to any Pare of Great Britain or Ireland.

1755, March, 1 , near 10 at Night the Sun is Eclipfed 8 Digits on the North fide, in Pifces 22 Degrees, then Vertical to Mardeisur, but little different from the Place in Oefober latt, Vifible on the Weft Borders of America and unknown Ocean.
Augut 26, at $8 . \mathrm{in}$ the Morning the Sun in Eclipfed 8 Digits on the South fide, in Virgo is Degrees, Vertical to the Indiair Sea, Latitude 6° North, Longitude 60 Degrees Eaft, 4 h . Vifible to the Southern Seas.

Setiember 9, near It in the Forenoon the Moon is Eclipied 8 Digits on the North fide, in Pifces 17°, then Vertical to Marcielzur, Latitude 1° South, Longitude 160° Weft, to h. 4^{\prime} Vifible to all the Northern parts of America and Afia, to Part of Tartary, Cibina, and thofe Eaftern Parts.

1756, February 19, at 2 in the Morning the Sun is Eclipfed in Pifces in Degrees, and is then Vertical to Terra de Papas, Latitude 7° South, Longitude 146 Eaft 9 h. 44'. This will be a very great Ecliple, Total and Central at Borneo.

Ausuft 14, at 7 at Night the Sun is Totally Eclipfed in Virgo 3 Degrees, Vertical to a little Sea Weft of New Spain Latitude 10° North, Longitude 115 Weft, 7 h. 40^{\prime}; Vifible at Nere Spain, Famaica, Ierra firma and all the Places near thereunto.

1757, February 7, at I Afternoon the Sun is 7 Digits Eclipfed on the South fide, in Pifces $0^{\circ} 9^{\prime}$, then Vertical to the Etbiopian Ocean South of Afcenfion I/land, Latitude is Degrees South, Longitude $14{ }^{e}$ Weft, i h. Vifible in the cean above mention'd.

Auguf 3, at 11 at Night the Sun is 5 Digits Eclipfed on the upper, or North fide, in Leo 22 Degrees, Vertical to the Oceanus Magnus, Latitude 14 North, Longitude 165 Weft in h. Vifible to the unknown Southern Seas.

Decem-

December 29, at 6 at Night the Sun is Eclipfed near a Digits on the North fide, in Catricornus 19, Vertical to the Pacific Ocean, Latitude 21 South, Longitude go Weft 6 h . Vifible about Hudfon's Bay, \&c.

1758, fanuary 28, ${ }^{26}$ paft 4 in the Morning the Sun is Totally Eclipfed in Aquarius is Degrees, Vertio cal to the Sea, South of the Illand Gava in the Eaft Indies, Latitude 15 South, Longitude 110 Eaft, 7 h. 20^{\prime}, Vifible in the South Seas.

Fune 24, at 55^{\prime} paft 8 in the Morning the Sun is Eclipfed 3 Digits on the South fide, in Cancer 13 Degr. he is Vertical to Arabia, a little Eaft of the Red Sea, Lat. 23° North, Longitude 4 I Eaft, $2 \mathrm{~h} .44^{\prime}$. It may be feen by thofe that fail to the Eaft Indies, at the Cape of Good Hope, \&c.

Tuly 9, at 44^{8} paft 4 in the Afternoon the Moon is Eclifped in Capricorrus 28 Degr, then Vertical to the Sea, Weft of New Holland, Latitude 21 Degrees South, Longitude 107 Eaft, 7 h. 8', Vifible to all the South Eaft Parts of Africa, to Madgalcar, to Iurkey in Afia, to Tartary, Perfia, Cbina, and to all the Iflands adjacent; this Lclipfe will be Total with Continuance, Digits I 5 .

Decenber 20, at 30^{\prime} paft 7 in the Morning the Sun will be Eclipfed 6 Digits on the North fide, in Capricornus 9 Degrees, and then Vertical to the Oriental Ocean Eaft of Madagafcar, Latitude 23 South, Longirude 67 Degrees Eaft, 4 h. 26'; feen in Perfia and Great Tartary.

1759, Fune 13, at 13 palt 5 in the Afternoon the Sun is Eclipfed in Cancer 3 Degrees, Vertical to the Sea a little North, of the great Mlland Cuba, Latitude 2; Degr. North, Longitude 8o Degr. Weft, 5 h. 20'. This Eclipfe will be Total, and Vifible to South Ame rica, \& cr.

December 8, at 14^{\prime} paft 2 in the Afternoon the Sun s Eclipfed in Sagittarius 27 Degrees, he is then Verical to the Sea a little Eaft of Cape Frio in Brafils, Latitude 23 Degrees South, Longitude 33° Weft, 2 h . 12'. This Eclipfe is Total and Central to the Souhern Parts of America.

1750, Nivember 26, at 2 in the Afternoon the Sun is Eclipfed in Sayittarius 16 Degrecs; Vertical to the Eaft of Brafll, Latitude 23°. South, Longitude 30 Eaft, 2 h. Vifible in the Southern Seas, 6 Digits on the South fide.

176r, April 23, 40^{\prime} paft s Afternoon the Sun will be Eclipfed near one Digit on the South fide, in Taurus 15°, then Verrical to the North-Eaft Coaft of Nere Spain, Latitude 17°, Longitude 85° Weft, 5 h. 40^{l}; Vifible in the Southern Parts of the World, near the Straits of Magellan.

May 23, at I in the Morning the Sun is Eclipfed 2 Digits on the Nortb fide, in Gemini 13°, then Vertical to the Oriental Sea, Latitude 22 Degr. North, Longitude 165 Eaft, I I h. Vifible only to the Northern Frozen Seas.

OEFober 16, at 30° paft 10 at Night, the Sun is Eclipfed, fcarce one, Vifible in the Arric Circle.

November s, near Noon, the Moon is Totally Eclipfed in Taurus 2s degrees, then Vertical and Vifible to the great Ocean between Afia and America; allo feen in Perfia, Cbina, Great Tartary, all the Eaftern Iflands, and in the North-Weft Parts of America.

November 15, at 2 in the Afternoon the Sun is Eclipfed iu Sagittary 5 degrees. This is a very fmall Eclipfe, hardly worth taking notice of; it is feen in the Antartic Circle.

1762, April I3, at 281 palt 5 in the Morning, the Sun is Eclipfed 9 digits on the South fide in Sarus 4 degrees
degrees, then Vertical to the Southern Parts of India beyond the Ganges, Lat. 30 degrees North, Long. 100 Eaft, 6 h. 40', Vifible in the Oriental Ocean.

1763, April 2, at 15^{7} paft 10 in the Forenoon, the Sun is Eclipfed in Aries 23 degrees, then Vertical to Ethiopia, Latitude 9 degrees North, Longitude 29 Eaft, i h. 44 '. This Eclipfe will be Total and Central, confpicuous to all Africa, and part of Afia.

Sept.26, at I in the Morning, the Sun is Eclipfed in Libra 13 degrees; he is then Vertical to the Eaftern Ocean, Latitude 5 degr. South, 170 Eaft Longitude, in h. 8^{\prime}. This is alfo a Total Eclipfe, but not Central. It will be little feen, by reafon it falls fo remote from any known Country.

This general View of Eclipfes, I hope, will fatisfy the Curiofity of the Courteous Reader: For (in my Opinion) a more particular Account of them wou'd be rather tedious than entertaining.

Note, that the North fide of the Moon is the upper fide, as view'd by us ; and the South fide, the lower fide : For if the Moon has South Latitude, the Sun's Eclipfe is on the South, or lower fide ; but the Moon's Eclipfe is always on the contrary fide. If her Latitude be South, her North, or upper fide is obfcur'd: But if her Lasitude be North, the Eclipfe is on the South fide. The Moon's Eclipfe begins on the Eaft fide, and the Sun's Eclipfe on the Weft fide.

Time's Telefcope.
The Several Faces of the Moon.

There are the feveral Faces the Moon makes at us; but he always looks with a pleafant full Face towards the Sun, and good reafon Why ? Becaufe all the Lufter ot her Opake Vifage is borrow'd from that glorious Planet: And when the is deprived of that, (I mean Eclipsed) the then puts on her Widow-Drefs and mourns for the Lads of his Countenance: But not Staggering in the dark, the fill purfues her Courfe till the again repofiefs her precarious Glory.

The Figure r. reprefents the New Moon, when it is in Conjunction with the Sun; the dark Side of her Body is then towards the Earth (as per Figure) and fo is Invifible. From the Change to the firt Quarter, the is falcated, or bent like a Sickle, as in Figure 2.

In the fit Quarter the is Dichotomized, or cut just in two, and has then half of her Light, as in Pisure 3 .

From the Firf Quarter to the Full, the is Gibbous, or in her Cibbofity; that is, Abunching out as reprefenced by Figure 4.

In the Full Moon the Enlightened Part which is towards the Sun, is cured towards the Earth; therefore appears with a full Face, as is plain in Figure 5 .

From the Full to the laft Quarter, the is again in her Gibbofity bunching out on the other file, as in Figure 6.

In the Raft Quarter fie is again Dichotomized ; and that fire that was in darkness at the Firft Quarter, is Enlightned, as in Figure 7.

From the Lat Quarter to the Change, the is again falcated on the other file, as in Figure 8.

And the fe Various Chafes the Moon thews to the Inhabitants of the Earth about (according to her midd le Motion) 29 Dues... and a half.

The Sun and the Earth are plain to any Eye, without being figured. The Earth is the true Stereographical Projection of the Sphere to the Elevation of the

Iime's Telefcope.

Pole at Edinburgb ; where P reprefents the North Pole, S the South Pole; and upon thefe Poles, or Axis, the World is fuppos'd to turn; becaufe they are the only Points in the Whole Erame of Nature that feem to be fix'd.

Z reprefents the Zenith, or the Point juft over our Heads, N the Nadir, or that Point in the Heavens, which is directly under our Feet diametrically oppoftre to the Zenith.

The Line, Z N, is the prime Vertical, or Eaft and Weft Azimuth, upon which the Sun is at $60^{\circ} \mathrm{Clock}$,

©, reprefents the North Tropic Line, in which the Sun enters the ioth of fume, and Rifes near H , on the Right Hand, where you fee that Line cut the Horizon, and is upon the Line $\mathrm{P} S$, at o o Clock, and comes up at Noon to σ.

When the Sun comes to this Line (PS) it is always $60^{\text {'Clock, whether it be above, or below the Hori- }}$ zon.

H H reprefents the Horizon; the light Part above the Horizon is called the Vijule Hemijpere; the dark part under, the invifible.
vs, reprefents the South 'Tropic, where the Sun eno ters about the 1 oth of December, and then Rifes where you fee this Line cut the Horizon; and is at Noon a little above H on the Left Hand.

The broad Circle between the Tropics is call'd the Ecliptic, or the Sun's Path; thro' the middle of which paffes the Equinoctial Line.

North and South of the Tropics are the Temperate Z.ones, in the Northern of which we live; and next to the Temperate Zones are the Polar $\mathrm{Circles}_{2} \& \mathrm{C}_{0}$

A Type of the Moon's EEniPfe.

11 His Diagram reprefents the Manner in which the Moon is Eclipfed: The Moon refpects the Earth for her Center, and moves round it once every Month. Now the thadow of the Earth extending it felf far beyond the Moon's Orbit, muft of neceffity fometimes fall in the Moon's Way; and this happens when fhe is within 12 Degrees of either of her Nodes, commonly call'd the Dragon's Head and Tail; and when the Sum of the Moon's Latitude and Diameter

Time's Telefcope.

are lefs than the Diameter of the Earth's Shadows then fhe continues Totally dark, fometimes above an Hour and a half: But when the Sum of the Moon's Latitude and her Diameter are equal to the Diameter of the Cone of the Earth's Shadow, then the is no fooner all Immerfed into it, than the Emerges on the other fide of the Shadow.

When part of the Moon's Body only paffes thro ${ }^{2}$ one fide of the Shadow, then the Eclipfe is partial; but if the be above 12 Degrees from her Nodes, The paffes by without touching it, and confequently fuffers no Eclipre.

Of the Harveit-Moon.

wHen the Moon happens in Apogeon, or greatef: diftance from the Earth, North Latitude, in a Sign of Short, or Oblique A fcenfion; fhe then Rifes (in the Northern Hemifphere) within 9 or $x \circ$ min. two Wights together. When the Moon is in a Sign of Oblique Defcenfion, (in or about Augult) in Apogeon, and South Latitude, fhe may poffibly fet to the Northern Inhabitants within 10 or 12 minutes difference 2 or 3 Nights together. But when the Moon is in a Sign of Right, or Long Afcenfion, in Perigeon, and South Latitude, there will be then above an Heur and a half difference between the time of her Rifing one Night, and that of the next Night, to the Inhabitants of Great Britain. And if the Moon has North Latitude, in a Sign of Right, or Long Defcenfion, and in Perigeon, or Leaft Diftance from the Earth, the then fets an Hour and a half Later, 83 .

Time's Telescope.

A Type of the Sun's Eclippe.

THat the Sun's Eclipse is 'Total to one part of the Earth, to another partial, and to a third at the fame time no Eclipfe at all, is proved from this Pigre. An Obferver at A fees the Sun Totally Eclipfed; one at B fees him half Eclipfed; but one at C fees no Eclipfe at all.

The Names and Characters of the Sun, and the 7 Planets.
 Mercury \neq, Moon 3.

The

The Greatef and Leaft Difances of the Planets from the Sun, and frum the Earth, in Englifh Miles.

From the Sun.

SGreareft	607.465.956
万 Leaft	541.945 .387
45 Greateft	353.520 .904
$4{ }^{4}$ 2 Leaft	320.996275
S Greateft	146001.785
O" LLeat	121.156 .610
5 Greateft	110467.018
2 Leaft	106791.012
Greateft	94.347 .947
2 Leaft	9347.947
\{ Greateft	80.353 .739
L Leaft	52.914 .839
\{ Greateft	110.756 .016
$\{$ Leaft	106.567 .876

From the Earth:

S Greatelt	608.227 .429
Leaft	542.625 .730
S Greateft	353.964 .314
\{ Leatt	321.399 .072
S Greateft	122.440.508
Leart	101.604 .764
Greateft	110.467 .018
Leaft	106.791 .012
Greateft	134.017 .363
\{ Leaft	15.165.311
Sreateft	97.171 .952
Leaft	37.988.985
Greareft	258.998
Lealt	223.130

When the Earth is at a mean Difiance from the Sun, the Cone of the Earth's Shadow is 214 Semi-diameters of the Earth, equal to 852700 Englifh Miles.

The Earth's Circumference 25035
The Earth's Diameter
Height of the Armofphere

Of the Magnitudes of the Planets.

5Aturn is two hundred and ninety eight times greater than the Earth; Fupiter is, five hundred and feventy feven times greater than the Earth; Mars is; fifteen times leffer than the Eartb; the Sum, is two hundred fifty eight thoufand three hundred and nine times greater than the Earth; Venus is three times leffer than the Earth; Mercury is twenty feven rimes leffer than the Earth; the Moon is fifty times leffer.

T"be Explantion of the following Syfem.

THis Syftem was firft invented by Pbytbagoras the Samian, who flourifh'd 509 Years before the Birth of Chrift ; but after his time it lay dormant'rill Nicbolas Cooprnicus revived it, from him call'd the Copernican Syfem. It's likewife called the Solar Syfem; becaule $S o l_{,}$or the Sun is placed in the Center. It has now gain'd the Efteem of the Learned Part of the World.

The Sun is in the Center, that great and gloriousFire of the Univerfe, ever burning, but not confuming, plac'd there by our Wife Creator, to impart it's reviving Rays, Light and Heat to the ocher Parts of the Vifible Creation: For the Earth, and all the other Stars borrow their fparkling Lufter from the Sun. One fide of the F trth being always enlightened, it appears to the other Stars, as they do the Earth.

The Sun has a Rotation upon his own Axis, which he finifhes in twenty five Days and a quarter: Next to the Sum, is Mercury; He makes one Revolution round the Sun in his Orbit in 87 Days, 23 Hours, 15 Minutes. His Daily Motion is 4 Degrees, 5 Minutes. Mercury keeps always fo near the Sun, and fhines with fo great a Lufter, that his Spots cannot be difcover'd, by which Reafon his Rotation cannot be certainly determined. But it is very Rational to conjecture, that he has fome Spots, as well as his Fellow-Creatures; for the brighteft of all Vifible Creatures (I mean the Sun) is not without Spots: And indeed when I look over the brighteft of my own Acquaintance, I can find none without Spots: But by the bye, I wou'd have you to know, that all Spots are not Blemifhes, but very much contribute to the Ferfection and Beauty of a great many Creatures of feveral Species.

Mercury according to his mean Motion, is conjoin'd with the Sum once in Irs Days; he is never above

Time's Telescope.

28 Degrees from the Sun. Next above Mercury, is Venus; Vulgarly call'd the Morning and Evening-Star: She is the mot splendid of all the Planets; rolls round the Sum in 224 Days, 16 Hours, 49 Minutes: Her mean Daily Motion is I Degree $3^{\prime}{ }^{\prime}$, and turns round her Axis once in 23 Hours: She is conjoyn'd with the $S_{n n}$, according to her middle Motion, once in 584 Days, never found above 4^{8} Eagres from the Surf.
By the Motion of thee two Inferior Planets, we are very well affur'd of the Earth's Motion: For if their Orbs circumfrib'd the Earth's Orb, then once in every Revolution, the Earth would interpofe between them and the Sun; but inch a Phenomenon has never been obferv'd.
See the Learned Mr. Char. Leadbetter's Syjpen of the Planets demonstrated.

Next above Venus, is the Earth with the Moon moving round it . The $\begin{aligned} & \text { arch performs one Revolution }\end{aligned}$ round the Sun (and her Handmaid the Moon along with her) in 365 Days, 5 hours, 49'. The Earth has a Second Morion upon her Axis, from Wert to Eat, which the performs in ${ }_{2} 4$ Hours: This is the cause of Day and Night, (and according to appearance) the Riving and Setting of the heavenly Bodies.

A Third Motion the Earth has, which is from South to North, and from North to South, which in refpect of the Equinox, is the cause of Summer and Winter.

The Moon moves round the Earth in 27 Days, 9 h. 43^{l} in which time the turns upon her own Axis. Next above the Earth, is Mars, of a red fiery Colour, moves round the Sun in one Year, 32 Days, 23 Hours, 27 Minutes; according to which middle Motion, there are two Years, and fifty Days between every Conjunction with the Sun.

Jupiter is next above Mars, with his four Atendaises, called Satellites or Moons, with which he moves round the Sun in his Orbit in II Years, 317 Days, 12 h. $20 /$ According to which motion, in 358 Days he is in

Time's Telefcope.

Conjunction with the Sun; his mean daily Motion is 5 his Shadow does not reach Saturn's Orbit. He is obferved with Rings or Belts round him, $E^{3} c$.

Note, 'That the Flanets are not placed in the Syftem according to their true Diftances, (for the fmallnefs of the Page wou'd not permit it without Crouding Mars and the Inferiours Planets too near the C nter;) And that the Shadow of 7 upiter does not reach the Orbit of Saturii, tho' in this iagram it gocs bey ond it. But the Diftances of the Planets from the Sun and from the Earth being already given, fufficiently fupplies what cou'd not be diftitetly done in the Syftem.

Thel ength of the natural Day in each Planet is equal to the time of their Rotation about their Axis.

Saturn is the Higheft Planet in the Syftem, and moves flowly round the Sun with his five Moons about him, in the face of 29 Years, 174 Days, 6h.36t; his Daily motion is two minutes; and every 378 Days is conjoin'd with the Sun: His Spots cannot be feen, becaute of his Immenle Diftance from us; whereby to determine his Rotation; but by fome Aftronomers he is fuppoled to turn round upon his Axis in 29 Days, roh. r'.
Befldes what is above faid, Saturn, 7upiter Mars, Vonus and Mercury have a Direct, and a Retrograde Motion

A Planet is faid to be Direct, when it moves according to the right Order of the Signs from Aries to Tuurus; and Retrograde, when it feems to go back from Aries to Pijces: And upon the turn between thefe contrary Motions, the Planet is faid to be Stationary, or at a ftand:

But in Reality thefe Planets go always Direct, as well as the Earth and the Moon; and this Retrograde Appearance to us is cauled by the Earth's motion.

Mars and Vemis are obferved to have their Increafe and Decreate of Light as well as our Moon.

Time's Tellefope.

The Comets, or what we call Blazing Stars, by Aftronomers are fonnd to be of the fame Species with the other Planets; they move round the Sun in Ellipfis or Oval, and are always feen with their Tails turn'd from the Sun.

In this Syfem you may fee the manner of their Defcent to, and Afcent from the Sun: They remove far beyond the Syftem of Saturn; but defcend at different Periods of times to vifit the other Planetary Worlds.

There will be a Comet feen in Great Britain in 1758 ; this Comet was feen in the Year 1682, its Period being 75 Years and half; another appear'd in 1661 , and will appear again in 1787 , its Period being 129 Years.

$$
\begin{gathered}
\text { Time's Tellefcope } \\
\text { To The Ircie SYS T E M of the World. }
\end{gathered}
$$

RULES to find the common Notes of the Year, and to continue the Cbanges and Eclipees.

For the Golden Number.

0NE was the Golden Number the Year our Saviour was born: Therefore to find this Number for any Year propofed, youmult add I.

Example, To the firf Year of our Lord, I add 1 the Golden Numher is $2, \mathrm{E}_{6}$. Now when the Year and i added exceed 9 , the Sum muft be divided by 19 ; the Remainder is the Golden Number, and the Quorient Thews the Revolutions the Sun and Moon have made fince the Birth of Chrift.

Example 2. For 1734 , add 1,1735 , which 1 divide by 19 .
19) 1735 (91 the Quotient is 91

171 Revolutions fince the Birth of Chrift
25
19
Rem. 6 Golden Number for 1734.
When nothing remains, 19 is the Golden Number: becaule that is the Laft Year of the Revolution. See Page 13.

For the Briti β_{h} Epact, Multiply the Golden Number by : ; if the Product is under 30, it is the Epact for the Year propoied; But if the Product exceed 30, divide the Sum by 30 , the \mathbb{R} emainder is the E pact.

Examnte, For: 174 , Golden Number 6. Multiplied by 11, gives 66 givide by 30) 66 (2. Remain 6, Epact.

For the Roman Epact. Now becaufe they are II Lays before us, (See Page 8.) you muft Subtract i: from the Britifs Epact, and the Remainder is the Roman Epact: But when Subtraction cannot be made, add 30 .

Example for 1734. The Britifh Epact 6; becaufe I cannot iubtract If from $6, I$ add 30 , the Sum is 26 ; from
from which I take 11, and there remains 25, the Roma tiv or Gregorian Epact.

Example 2. 1798, the British Epact 23 ; from which take in, remains 12, Roman Epact. See Haze 23.

For the British Dominical Letter. Divide the Year of our Lord by 4 ; then add the Quotient, and 4 to the Year, and divide the Sum by 7 ; the lair Remain= der fubtract from 7 , gives the Nu:nber of the Leto ter.

For Example,

7) 2171 (3 10 - Rem. r Equal to F-m-6 See Page 7_{0}
But when no Remainder happens, 7 is the Number of the Letter.

Note, After the firf Divilion, if nothing remains, it is Leap-Year ; if remains, the frt after; if 2 , the second; if 3 , the third after Leap-year.

For the Roman Letter. Divide the Year by 4, and the Year, and its fourth part by 7, and the laft Remainer fubtract from 7 , gives the Number of the Letter.

Example. 4)1734(433-- Rem. 433
7) $2167(309$

4 Rem. 4.
?em. 3 or C. See Page go

Time's Telefcope.

The Letters muft be thus number'd:

$$
\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
\mathrm{~A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} & \mathrm{E} & \mathrm{~F} \\
\mathrm{G} .
\end{array}
$$

For the Cycle, or Circle of the Sun. Add 9 to the Year of our Lord, divide the Sum by 28, the Remainder is the Cycle of the Sun.

- Being the Circle of the Sun the Year our Redeemer was born, 1 wou'd know what Day of the Week it was on? To find which, I mult look for 9 under the the'Title Cycle of the Sun in the firlt Table, Page 4, and againft 9 under December is Wedne d day; entering the next Table with Wednefday, I find the 2ς th, of December fell on Saturday, which was the Sabbath. On which Day the Lord of the Sabbath condefcended to be born.

Again, entering the Table, Page 7, with 9, Cycle of the Sun, I find the Dominical Letter (it being LeapYear to be DC ; now I enter the Table, Page 21, with C, and Golden Number 1, (as before mention'd) by which I find the Number of Direction to be 21 ; from which I Subtract 10; the Remainder is Eaffer Day in April 1 I .

Example 2. I wou'd know the Cycle of the Sun the Year of Chrift 33; to which I add 9 . Suin is 42.

$$
\text { Remains }{ }^{28)} \begin{gathered}
\text { 28 } \\
--\ldots-\infty
\end{gathered} \text { Cycle of the Sun }
$$

And by the foregoing Rule I find the third of April was the Eriday on which Day our gracious Lord finilh'd the great Wrik of Redemption, and offered himielf up a Sacrifice for the Sins of the People, while they were yet his Enemies! On the fourth Day was kept the Pafover of the fews. The fifth Day, which was rae firit Day of the Weck, the Victorious Captain of our Salvation Rofe from the Dead, having conquer'd Hell and Death, and all Infernal Powers, and Caluted his Liiciples whit Peace, Life and Immortality! And in grateful Remembrance of which, his Apoftles changed their Sabbath from the Seventh to the firft Lay of the Week, now properly call'd the Lord's Day.

Now this Feaft, Vulgarly call'd Eafter, might more properly be call'd the Chriftian Paffover, or the Refurrection of Chrift; racher than go by the Name of that Concubine of Satan; (for Eafter was a Rotten Goddefs of the Heachen Saxon:.)

To find the Age of the Moon, according to her middle Motion. Firft, look for the Epact for the Year propofed ; add the Epact, the Month of the Year, and the Day of the Month together: If the Sum be under 30, it is the Moon's Age: But if it exceed 30, divide the Sum by 30 , the Remainder is the Moon's Age.

The Months muft be Number'd as under write ten.

0	2	$\mathbf{1}$	2	3	4
Jan.	Feb.	Mar.	Apr.	May	June
5	6	8	8	10	10
July	Aug.	Sept.	O\&t.	Nov.	Decent.

Three EXAMPLES.

Jan. 1 , 1734.	Dec. 3 r, 1734		Dec. 3I, 174%	
Epact 6	Month	10	Epact	
Month 0	Day	31	Mont	10
Day	Epact	6	Day	35
D's Age 7	Subt. $\quad \begin{aligned} & 47 \\ & \\ & 30\end{aligned}$			
	D's Age	17		10
	Moon's Age ro			

Having the Age of the Moon, to find her Southing. Multiply the Moon's Age by 4; divide the Product by 5 ; and as often as you find 5 in it, fo many Hours, and every Unite of the Remainder goes for 12 Mi nutes.

Moon's Age	7
Multiply by --*	4
Divide by	$\begin{aligned} & 5) 28\left(5 h_{0}\right. \\ & 25 \end{aligned}$
The Remander	3 - or 361

Moon Souths 36 Min. paft 5 in the Afternoon.

Time's Telefcope.

Moon Souths 36 Min. paft x in the Morning.
The Moon comes to the South the 7 th Day of heys Age, 36 Minutes paft 5 in the Afternoon. In the Moons Decreafe, or when the is paft 15 Days old, you mult fubtract 15, and ptoceed with the Remainder as in this Laft Example: Now to find when it will be high Water at Lowdon-Bridge, add 3 Hours to the time of the Moon's Southing, and you have the time defired.

For the Day of New Moon, add the Epact and the Month propos'd together ; fubtract the Sum from 30, the Remainder is the Day of New Moon: When the Epact and Month thus added together, Exceed 30, then fubtract it from $\varsigma 9$; the Remainder is the Day requir'd.

For the Day of Full Moon, add the Epact and Month together ; fubirad the Sum from 15 ; but when Subtraction cannot be made, borrow 30 , which make 45 , and the Remainder gives you the Day of Full Moon.

Example	1734	Example 2,	1744
Fpact	6	Epact	26
Month	4	Month	6
	10		32
Subt, from	15	Subt. from	45
Full Moo		Full Moon	

The Period of Eclipfes (according to the Learned Dr. Haley) is I8 Years; Io Days, 7 h .43 min . in LeapYear II Days, 7 hi 43 min . For Example, in 1744 the Moon is 8 Digits Eclipfed Aril 15, 32 Minutes paft 8 in the Afternoon; I wou'd know when this Eclipfe returns ?

Example. Sun is Eclips'd D. h. ${ }^{l}$
1744. Apr. I5 832 a .
$\frac{18}{1962}, \frac{11}{\text { Apr. } 27443} \frac{75}{15} \mathrm{~m}$.
Example 2. Sun is Eclips ${ }^{3}$ d D. h, !

This is the beft general Rule that can be given to continue Eclipfes from one Yeat to another ; and may ferve well enough for common ufe to examine Eclipfes by ; but not to truft to for the exact Quantity, and the precife Time.

Iime's Telefcope.

To find the Roman Indiction.

ADD 3 to the Year of our Lord; divide the Sum by 15, the Remainder is the Number of Iudiction; and the Quotient hews how many Years fince Tribuce was paid to the Romans: For once in is Years, all thofe Nations that were under their Monarchy, paid them Tribute.

Example. Add 3 to this prefent Year 1734, which makes 1727 , divided by 15 , gives in the Quotiant 115 , Multiplied by 15 , gives 1725 , Years fince Tribute was firf paid ; the Remainder is $\overline{12}$, Years fince Tribute was laft paid. See the Work.
15) 1737(115 The Table, Pages 21, and 22, Thew
 the Number of Direction in both Accounts forever.

To find E Urier, Subiract the Epact of the Year propos'd, if it be under 28) from 47 ; bu: if the Lpact be 28 , or 29 , fubtract it from 77 . the Remainder is Eafter Limit; whach if it be lefs than ;2, it is in March, if it be above 31, in April: The next Sunday after the Limit thus $f_{\text {ound, }}$ is Eafler-day.

Example. The Epact for 1734 , is 6, fubtracted from 47 , there remains 4 r ; fubtract from 41,31 , the Number of Days in March, there remains io. Now look in the Table, Pag. 4, and 5, and you'll find the next Sunday after the ioth of April to fall on the 14^{th} of the fame Month.

Example 2. The Epact for 1736 , is 28 , Subtracted from 97 , there remains 49 ; from which take 31 , there remains :8, Eafter Limit in April; which Lay falls on Sunday, and next Sunday after is Eafier-Day, April 25. The Year 174*, the Epact is 23, the Limit 24, Eafter Day Marcb 26, \&re.

Of Years, Months and Days; firf, of Years.

THE Natural Solar Year, is that fpace of time the Sun takes to go thro' the 12 Signs of the Zodiack ; that is, from one Point of the Ecliptick till it return to the fame again, and contains 3 的 5 Days 5 Hours, 49 Minutes, 26 Seconds.

A dyderia! Year is the time the Sun takes in going from any fix'd Star, till He overtake the fame Star again, containing 365 Days 6 h .9 min .

The Lunar Year confifts of 12 Lunations, or Synodical Months; and is lefs than the Solar Year by I I Days; which II is call'd the Epact, made ufe of to find the Moon's Age, E3c.

The Civil Year is that which is in common ufe among Nations, and varies according to their differeent Accounts of time.

The \mathcal{F} ulian Year confifts of 365 Day:, 6 Hours; but the 6 Hours are omitted for 3 Years fucceffively, and are taken in the 4th Year, then making up 24 Hours, or a natural Day, which is added to February, then 29 Days.

Note, The common Year contains 5_{2} Weeks and one Day; but if a Year contain'd only 52 Weeks, the Day of the Month wou'd always fall on the fame Day of the Week ; but the odd Day caufes the Day of the Month to fall one Day later every Year in the Order of the Week-Days.

In Biffextile or Leap-Year two Days later, the Fulian Year is 10 Minutes, 34 Seconds more than the true natural Year.

This Account of time was fettled by Fulius Cafar 44 Years before the Birth of our Saviour ; and is ftill in ufe in the Britilh Dominions, by the Mofcovites, Syrians, Abifines, Zitbiopbians, \&cc. (the Names of their

Time's Telcfoope.

Months differ.) The Vulgar Year in Great Britains begins on the if Fanuary, the Ecclefiaitical Year on March 25; on which Day the Joyful Mcffage was brought to the bleffed Virgin.

The Aftronomical Year begins at the Vernal Ingrefs, (now the geth of March.)

The Gregorian Year contains 365 Days, 5 Hours, 49 Minutes, 2 Seconds; which is lefs by 24 Seconds than the true Solar Year.

The Gregorians have their common Years and Leap-Years the fame with the fulians, except it be at the End of a Century, or 100 Years.

For Example; the Years $1700,1800,1900$, (all Leap-Years in the Fuilian Account;) but the Gregorians omitting the 2gth of February get before us in reckoning of the Month in that Space of Time 3 Days: But in the Year 2000, they take in the Leap-Day, and by that means the difference between the two Accounts (13) is the fame as in the Year 1900. See the Table, page 8.

The Gregorian Year begins the firf of \mathcal{F} amuary equal to the 2 :1t of the 7 Dian December.

This Account is received by all the Countries that profefs Subjection to the See of Rome.
The Arabians, Indians and Ifurks account by the Moon.

The Fews, or Hebreros (in remembrance of their departure out of Eypt) begin their Ecclefiaftical Year the rath of the firf Month; and the firf New Moon after the Vernal Equinox begins the xft Month call'd Nifan, which takes in part of our March and April.

Tilfri, or the 7 th Month, begin their Civil Year ; the ift New Moon after Antumn Equinox begins this Month; it takes in part of our September and O ofoc ber.

Of the Four. 2narters of the Year.

I Of the Spring-Quarter.

THE Spring, or Vernal Quarter begins the gth of March, when the Sun enters Arles, or the Ram; the Sun is then faid to be in the Equinoctial Line, making Day and Night of Equal Length to all parts of the World. But this muft be thus underftood; that the Sun then appears equally in both the Northern and Southern Hemifpheres. For there are two Places on the Earth where the half of the Sun only is feen on there Equinoctial Days.

Firt then, thefe Places may be faid to have equal Day and Night at the fame time ; bec aufe the half of that great Light which rules the Day is above their Horizon, and the other half under.

Secondly, They may be faid to have neither Day nor Night ; becaufe they have not the Sun wholly above their Horizon, nor alogether depreft under.

T'birdly, They may be faid to have no Night at all, becaufe they have no Darknefs. See Page 40.

This Quarter continues while the Sun is travelling thro Aries, Taurus and Gemini.
2. The Summer-Quarter begins about the roth of Iune, when the Sun enters Cancer, or the Crab, making the longeft Day in the Northern Hemifphere, fand continues while the Sun is running thro' Cancer, Leo and Virgo.
3. The Antumn, or Harveft-Quarter begins the 2th of Septeraber when the Sun enters Libra, or the Scales; when Day and Night are equal all the World over, except under the Poles. This Quarter

Time's Telefcope.

continues while the Sun is Marching thro Libra, Scorpio and Sagittary.

The Winter-Quarter begins the roth of Devember, when the Sun enters Capricorn, or the Goat, which is the fhortef Day with all the Inhabitants on the North fide of the Equator. This Quarter continues all the time the Sun is paffing thro Capricorn, Aquarus and Pifces.

Thefe Signs are only certain Conftellations, or Companies of fixt Stars, lying in the Sun's yearly Pach; and are imagin'd to reprefent the Form of thofe Animals by whofe Names they are calld.

Of the Tivelve Muntiss of the Year.

THE Months are varioufly reckon'd, as well as the Year, and are either sfron mical or Political.

I Of the Afronomical Montb.

THE Solar Month, is that fpace of time the Sun takes in paffing thro one of the 12 Signs of the Zodiack; and is, (according to his middle Motion) 30 Days, ro Hours, 29 Minutes, 6 seconds: But this Month varies according to the true, or apparent motion of the Sun.

The Lunar Months are three.
I. The Periodical Month, is the time in which the Moon performs her Journey thro' the 12 Signs; and is (acco:ding to her middle Motion) 27 Days, 7 Hours, 43 Minutes, 7 Seconds.
2. The Synodical Month, is the time between one Conjunction and another, with the Sun ; which, (according to her mean Motion) the performs in 29 Days $_{9}$ 12 Hours, 44 Minutes.
3. The Month of Illumination, or Appearance, is 28 Days, or 4 Weeks, the longeft time that the Moon can be feen between Change and Change.

The Political or Civil Months are fuch as are ufed by all Nations; they differ much as to their Names, and Number of Days. I Thall only take Notice here of the Months that are in ufe in the old, and new Style; they being the fame as to their Names and Number of Days; and the Antient Hebrew, or Ferwifh Months, for the better underftanding of them, as they occur, (by Name or Number) in reading of the holy Scripture.

The Firft, orthe Eleventh Month, 3 I Days.
Fanuary, from Fanus, the firf Heathen King of the Romans, whom they Deify'd after his Death; and built a Temple in which they Worfhip'd him.

The Second, or Twelfth Month, 28, or 29 Days
February, from Februa, i. e. the expiatory Sacrifices offered up by the Antient Romans, for the Purifying of the People in this Month.

The Third, or Firft Month, 3 I Days.
March, from Mars, call'd God of Battle, or War, by the Heathens feigned the Son of 7 furio, and Father of Romulus, the Founder of Rome.

The Fourth, or Second Month, 30 Days.
April, from Apbroditus, or Venus, feigned Goddefs of Love.

The Fifth, or Third Month, 31 Days.
May, from Raid, a Heathen Roman Goddefs; likewife calld Elora. On the firft Day was kept the Feaf of Clorit, Hora, which was afterwaids Solemmised with Whowers and green Boughs, ftiling that Strumpet, the Goddefs of Flowers.

The Sixth, or Fourth Month, 30 Days.
Tune, fom 7 zuns, alfo a Heathen Goddefs, feign'd to be sifter and Wife to $7 u$ iter, and Mother of Mars: The Seventh or Fiffh Month, 31 Days.

Fuly, fo called in Honour of Fulius Cafar; the firft Hearhen Emperor of the Romans.

The Eighth, or Sixth Month, 3 I Days.
Auguft fo call'd in Honour to Auguftus Cafar, the fecond Heathen Emperor of the Romans.

In his Days was born the King of Heaven and Earth.

Note, September, October, November, and December, ftill, retain their old Latin Names.

Sept. fignifies the 7th, OCF. the 8th, Now. the 9th, and Dec. the roth, Month, reckoning from Marcb.

The Nint'n, or Seventh Month, 30 Days.
September for Septem.
The Tenth, or Eighth Month $9 x$ Days.
Ortober from Octo.
The Eleventh, or Ninth Month, 30 Days.
November from Novem.
The Twelfth, or Tenth Month, 31 Days.
December from Decem.

The Hebrew, or Jewifh Montbs.

	$\wedge^{\text {Bib or Nifant }} \text { Fiar, or Zif }$	30 Efth. 397. Exod. 13,4 29 I Kings 6, 1.
3	Sizan	30 Efth. 8, 9.
4	Tатии	
5	$A b$	30 I Cbron. 27, 5, 8, \&xc.
6	Ebul	29 Neb. 6, 15.
	Etbanim or Tifri	301 Kings 8, 2.
8	Marcbefuan, or Bull	291 Kings 6,38.
9	Cbifeut	130 Neh. 1,10
10	Zebetb	29 Efther 2, 16.
1	Sebat	30 Zech. 1, 7.
		29.Eftb.93

A whole

Time's Telefcope.

A whole Lunation, or the Age of a Moon from Change to Change confifts of about 29 Days and half. And therefore to avoid this Fraction, the Hebrews compos'd their Months alternately of 30, and 29 Days: And when the Difference between this way of reckoning by the Moon, and the true Solar Year (having regard thereunto) Amounted to fuch a Number of Days, then they added a Month more, which they call Veader; and this Month is plac'd before Ader, for Ader is always the Laft Month of the Year.

Of the Various zways of Reckoning Day and Night.

ANatural Day, is determined by the Sun's Motion (according to appearance) round the Earth in 24 Hours, tho in reality, it is the Earth that turns round her own Axis from Weft to Eaft, in that Space of Time : And this is the reafon the celeftial Bodies feem to us to move from Eaft to Weft.

The natural Day is alfo called Civil, becaufe diverfly reckoned by divers Nations.

The Britains and Romans begin the Day at Midnight; the Fews, Egyptians, Atbenians, \&xc. hegin the Day at Sun-Setting, which appears to be the true original Beginning from Scripture, Gen. I, 5, 10. the Turks, Babylonians, \&c. begin the Day at SunRifing Aftronomers begin the Day at Noon.

The Artificial Day is the time between Sun-Rifing and Sun-Setting (oppofite to which is Night) and differs in Length according to the Sun's Place in the Zodiaek and Latitude of the Region.

The Artificial Day, by Aftronomers is divided, be it long or fhort, into 12 Planetary Hours: The Length of a Plenetary Hour at London, when the Day is at the longeft it is about 82 min . at the fhorteft farce

Time's Zelefcoge:

48 min. This Reckoning is fuppofed to be in ufe at

The Server Days of tbe Week offerved as Sabbatbs, by

1. HFrifians, in Commemoration of Chrift's -and Refurrection.
2. Grecians, in Remembrance of the fecond Day's Works of the Creation.
3. Perfians, in Commemoration of the third's Day's Works.
4. Aflyrians, in Rememorance of the fourth's. Day's Works.
5. Egyptians, in Commemoration of the fifth Day's. Works.
6. Turks, in Remembrance of the Creation of Man.
7. Jerws, in Commemoration of God's Refting from all his Works.

Of the Names of the ferven Days of the Week

The Names of the feven Days of the Week continu'd.

	The Heathen Roman's Names of the Days of the Week	The Heather Names of the W	$\begin{aligned} & \text { Saxous } \\ & k \text { Days. } \end{aligned}$
I	Solis	Sun's-Day	1.
2	Lunx	Moon's-Day	2.
3	Martis	Tuefco't-Day	3.
4	Mercurii	Woden s- Day	4.
5	Jovis	Thors-Day	5.
6	Veneris	Friga's-Day	6.
7	Saturni	Seater's-Day	7.

Chriftians might thus diftinguifh the Days of the Week, and not ufe thefe Heathen Names. See Genefis x . The Heathen Romans dedicated the leven Days of the Week, to the feven Planets, (their Gods and Goddeffes) and accordingly called them by their Names, as in the the Table above.

The Saxons likewife call'd the Week-Days after the Names of their Idols; which Idols alfo reprefented the Planets.

The Jewifh Artificial Day divided into.

EAch of thefe Quarters, or large Hours contain three of the Planetary or fmall Hours, as appears plainly from this Table.

The firft Quarter of the Day takes in the firft, fecond and third Hours from Sun-Rifing : But to avoid the trouble that atiends the Planetary Hour, the fews
now-adays begin the Natural Day at fix a clock in the Evening, and the Artificial at fix in the Morning. And therefore, their firft Hour (beginning at fix) is equal to our feventh.

The fecond Quarter of the Day, which they call the Third Hour, contains $4,5,6$, equal to 10 , 11 , 12, E3c.

They divide the Night alfo into great Hours, or Watches ; each Watch confifting of 3 ordinary Hours. The firft Watch contains, $\mathbf{1 , 2 , 3}$, or the three firft Hours of the Night: The fecond Watch contains the $4^{\text {th }}, 5$ th and 6 th, 8^{3}.

Now this double reckoning of Hours occafions a feeming contradiction in tome, Paffages of the Holy Scripture: St. Mark 15, 25. 「ays, that our Lord was Crucified the third Hour; St. Fobn 19, 14 , fays, that Jefus frood before Pilate the fixth Hour: Now, thefe two Paffages may be thus reconcil'd that the End of the third great Hour (of which St. Mark Speaks) is equal to the end of the fixth fmall Hour, mention'd by St. Fobn. And this is farther proved from Verfe 33, where St. Mark agrees with the other Evangelifts concerning the time that the Darknefs began and ended : It began when our Lord condefcended to be Nailed to the Crofs, at the fixth Hour, equal to our 12th, and ended at Nine, or at Three in the Afternoon.

That this Eclipfe of the Sun was fupernatural, and not caufed by the Interpofition of the Moon between him and the Earth, is proved from the Pofition of the Lummaries at that time.

It is agreed that Chrift fuffer'd the 33 d Year of his Age", and confequently on the 3 d of April, Friday, or the Day before the Feaft of the Paffover ; on which very Day the Moon was at Full, which made Diony fus the Areopagite break out into this Exclamation; Eitber the God of Nature fuffers, or the Macbine of the World diffolves; not knowing how Prophetical he fpoke; but afterwards he was converted by Saint pau's

Preaching

Preaching, and was then perfwaded that it was the God of Nature that did really fuffer at that time. Chrift having taken upon him the Punifhment that was due to us for our breach of the Divine Commands, God the Father, therefore withdrew the Light of his Countenance from him, (for a time) and alfo the Light of the Sun! We deferved to fuffer in Eternal darknefs; But our gracious Redeemer, to refcue us from the Divine Juftice, takes our place, and fuffer'd in darknefs for us.

Let us not therefore flight this matchlefs Inftance of our Saviour's Love, and neglect So great Salvation! But let us be faitbful unto the end, to bim that thus loved ss, and wafbed us from our Suns in bis own Blood.

A Brief Difcription of all kind of Meters.

Firft, of Cloums.

CLOUDS, are a Congeries, or Heap, (chiefly) of Watery Particles drawn, or fent out of the Earth and Seas in Vapours; and fupended (being light of Body) in the fecond Region of the Air, till they are again difolved, either by Heat, or broken by the violent Agitation of Winds, or driven againft the fides of Hills and Mountains, \mathcal{E}.

Clouds and Vapours are the Parents of Rain, Hail and Snow; and Rain, and Water (to which Hail and Snow turn) are the Parents of Clouds and Vapours; therefore, fince they beget each other, and are of the fame Element and Subftance, very little need be iaid of them feparately; only, a Word or two touching the feveral fhapes and dreffes in which they appear to us.

RAIA, is nothing but a Cloud diffolved either by Heat, or broken by Winds, as above faid.
Here it may be obferved the great diftance of the Cloud from the Earth, the fmall Heat that diffolves it, caufes imall Drops; but if it he defolved by great Heat, or elfe be at frall diftance from the Earth, then are the Drops of Rain the greater, and more Vehement.
$S_{\text {n O }}$, is a Cloud, firft Diffolved into Drops, and in its Defcent to the Earth meeting with a foft freezing Wind, or at leaft paffing thro' a colder Region of the Air, each Drop is immediately frozen into an Icicle, fhooting it felf forth into leveral Points; and in their continual Motion and wavering to and fro, touching upon each other; or meeting (with) fome liprinkling and intermixing Gales of Warmer Air, \mathcal{E}°. fome are a little thaw'd, blunted, frothed, chumper'd ; others broken; but the moft hanked and clung in feveral Parcels together, we call Flakes of Snow, E^{3} c.

The true Caufe of the Congelation of Water into Ice, feems plainly to be the Introduction of the Frigorifick Particles into the Pores or Interftices between the Particles of the Water ; and by that means, gerting fo near to them, as to be juft within the Sphere of one another's Attracting Force, and then they muft cohere into one folid or firm Body. But Heat afterwards reparating them, and putting them into various Motions, break this. Union, and place the Particles fo far from one another, as to be out of the diftance of Attraction, and brought into the Verge of Repeiling Force, and then the Water re-affumes it fluid Form.

HAIL cometh of Rain congelated into Ice, (or as Dr. Fulk obferves) it is a hot Vapour in the middle Region of the Air, and by the Coldnefs thereof is
condenfed into a Cloud; which falling down, is by the fudden cold of the Loweft Region congealed into Hail.

The moft ufual times of the Year for Hail are April and October; becaufe then there wants neither hot Vapours to refift the cold, nor fufficient Cold to harden the Drops of Rain from whence it proceeds; whereas in Winter there wants hot Vapours, and in Summer 'tis too hot to congeal the Dro of Rain as they fall down.

Dew is compofed of Streams of the Terreftrial Globe, which for a while fwim to and fro in the Air, but at laft convene into Drops, and then fall down again to the Earth.

Heat, one of the Four primary Qualities of Bodies, and (according to the new Philofophy) chiefly confifts in the Rapidity of Motion, in the fmaller Parts of Bodies, and that every way: Or in the Parts being rapidly agitated all ways. It's Operation upon the Senfes we call Heat, and is Eftimated according to its Relation to the Organs of Feeling ; for we do not efteem any Body to be hot, unlefs the Motion of its fmall Parts be violent, or brisk enough to encreafe, or furpafs that of the Farticles, of the Organ: For if it be more week or Languid in the Object than in the Sentient, we fay, the Body is cold, \mathcal{C} c.

Cold, alfo one of the Four Primirary Qualities of Bodies; and is fuch a ftate of the minute Parts of any Body, in which they are more flowly or faintly agitated, than thofe of the Organs of Feeling ; fo that it is only a Relative Term, the fame Body being liable to be pronounced hot or cold, as its Particles are in a greater or leffer Motion than thofe of the Sena fitory Organs. Little need be faid of Cold, for every Body has it ready enough at their Fingers ends. R

The RAIN-BOW, or Iris, is the Sun's Image, rofected from the concave Surface of an Innumerable Cuantity of fmall fpherical Drops of falling Rain, 8.

Authors differ concerning the Original of this furprizing Bow.

Naturalifts affirm that the Rainbow appear'd before the Flood, (as being produced by a natural Caufe) as well as fince. But they ought to confider, that the greatCreator of all things, Vifible and Invifible, who fits at the Helm of the Univerfe,may caufe Nature to produce Signs and Wonders, when, and how He pleafes, without any Neceffity of a new Creation. And that the Rainbow was feen before the Flood, (as now) is very impropable; That a God of an Infinite and Boundlefs Power, fhould give as a Token or Sign of Confolation, to Noah, after his Melancholy Voyage, a Meteor that was commonly feen before:

But when we look upon it as then exhibited, and Eftablifhed by Almighty Power, as a perpetual fign of God's Covenant with Noal and his Pofterity, that the World fhould be no more drowned; I fay, we may then look upon it as a grand, and Beautiful 'Token, worthy of a God to give, to Engage the Admiration and Love of his People, and their Faith to rely upon his Promifes. Gen. 9, II, to 18.

Of THUNDER and LIGHTENING.

Thé Pbcnomena of this very common, but often times dreadfal Meteor, are thus accounted for and folved by Dr. Hook. The Atmofphere about the Earth abounds with Nitrous Particles of a fpirituous Nature, which are every where carried along with it; befides which fort of Particles, there are alfo others raifed up into the Air, which may be fomewhat of the Nature of fulphureous, unctuous, or other combutible Bodies: So that it is an Exhalation hot and dry, which

Time's Telefcope.

being drawn up into the middle Region of the Air , and inclofed in the Body of a thick cold Cloud, (io that the Hotnefs of the Exhalation cannot agree with the Coldnefs of the Place) it fuddenly breaketh out, and renteth the Cloud affunder. This Violent Eruption makes a greatNoife, which we call Tbunder. TheCloud being thus broken and diffolved by the Heat of the Exhalation, it falls downward; then follows (moft commonly) a Shower of Rain. Hence at the Rent of the Cloud there always iffues forth a Flah of Fire, which we call Lightening ; and that always precedes the Thunder-Clap ; becaufe our Sight is much quicker then our Hearing : For Light comes to us from the Sun in 7 minutes of time; whereas Sound (according to Sir Ifaac Newton's Law of the Motion of Sound) moves but 77 Miles in 7 Minutes.

A Thunder-bolt is a moft rapid Flame which darts out of the Cloud (when the Exhalation is fet on Fire) to the Ground, and frikes thro every thing in its way.

Eartbquakes are often occafioned (as Mr. Boyle thinks) by the fudden Fall of pondrous Maffes in the Hollow Parts of the Earth, whereby thofe terrible Shocks and Shakings are produced : And fometimes by the Violent Eruption of the Windy Exhalation out of the Earth, it cafteth up the Earth into the Air; and at other times it caufes it to fink a great depth, fwallowing up whole Cities! leaving (fometimes) Pafturage in the place of Tillage, and Tillage in the room of Pafturage.

I.

But God, who governs Nature's Laws, Is ftill the fundamental Caufe.
When we neglect, and flight his Love,
We hear his Threatning Voice above.

His founding Chariot fhakes the Skies, And th' Earth beneath him trembling lies !
He rends the Clouds, he tears the Air,
His Thund'ring Voice ftrikes Awe and Fear.

II.

Now, Fire and Lightning flyes abroad, The threatning Judgments of our God!
The Earth's Foundations reel, and thake,
The ftaggering Hills thus frighted, quake!
And yet the hard'ned Sinner ftands,
And ftill abufe the Lord's Commands !
He fears not him that fhakes the Hills,
Nor yet his Pow'r who faves and kills.

III.

Till laft in one Eternal Storm,
The God of Thunder fmite the Worm ${ }_{1}^{\prime}$
And then in Flames he mult confefs,
God's Juftice and his Right'oufnefs;
If Love and Threatning will not do,
God's Vengeance then muft needs enfue.
AIR, one of the Four Elements, wherein we breathe, and in which the Earth is ballanced by the Great Architect of the Univerfe.

Without Air, no Creature can live one Minute: For the Breath we draw, is Air. The Blood cannot circulate in our Veins without it. It gives Motion and Pregnancy to the other Elements. Fire would foon extinguifh, Water would putrify, and the fruitful Pores of the Earth wauld quickly clofe up without Air.

W I If D is defined to be a Scream, or Current of the Air ; and Conftant, Variable, Cold or Hot, according to the Latitude and Situation of the Region, Nature of the Soil, and Seaions of the Year, छc.

AUROR A BOREALIS, or the Northern Lights, vulgarly called Streamers, or Merry Dancers; becaule they mix and fhuffe, like a Set of CountryDancers, or like the Streamers of a great Fleet on the Main in a windy Day.

Strange are the Conjectures of the Unlearned concerning this Appearance in the Heavens: Some imagine, they fee Armies of Men, Horfes and Chariors fighting in the Air! which they take to be fure Prefages of War, Zc .

But the real Caufe is Natural, and proceeds from the Sun's having rarefy'd the lower Region of the Air in the Day-time, doth in the Night (a little after Sun-fet) raife thofe light Particles of Matter into the more Wtherial Region, and caules them to be feen there as fo many Streams, or Pyramidal Glades of Light, darting themelves (generally) towards the oppofite Parts of the Heaven ${ }_{3}$ where the Sun is at that time.

IGNIS FATUUS, or Fuolifle Fire, fo called, becaufe it makes People oftentimes wander out of their Way, who take it for a real and fubftantial Pire ; but when they find they are deceived, they are apt to call it a Foolifh Fire, or themfelves Fools for following it. It is alfo called Will with a Wifp, or fack with a Lanthom, appearing chiefly in Summer-Nights, haunting, moft commonly, Church-Yards, Meadows and Boggs. It confifts of a vifcous Subltance, or fat Exhalation, which, being kindled in the Air, reffects a kind of thin Flame, yet without any fenfible Heat.

Sbooting Stars are improperly called Stars, becaufe they are but fmall Exhalations in the Air: That Subftance (which we fee on the Ground in the Morning) is like Jelly.

Natural Prognoficks of the Weatber.

Scripture-Obfervations of the Weather.

sOUTH Wind, or Heat (in Summer) forefhews Whirlwind, 706 37, 9. Cold, or Fair Weather, is forefhewn by the North Wind, 70637.9 , 22. for that driveth away Rain. A red Sky in the Evening forefhews fair Weather ; in the Morning, foul, Matt. 16, 2. A Cloud rifing out of the Weft, forefhews Rain, Luke 12. 54. South Wind forefhews Heat, Verfe 54.

This was on the Main Continent.

> Signs of Fair Weather.

1. The Sun rifing bright and clear.
2. If he drive the Clouds before him into the Weft.
3. If at his Rifing, a Circle appears about him, and by degrees vanifhes away.
4. If the Sun fets red.
5. If the Moon be clear three Days after the Change, or three Days before the Full.
6. Clouds appearing with Edges, yellow.
7. A Cloudy Sky, clearing againft the Wind.
8. The Rainbow, after Rain appearing meanly red.
9. Mifts coming down from the Hills, and fetling in the Valleys; or Mifts in the Evening, fhew a hot Day on the Morrow; likewife white Mifts rifing from Waters in the Evening.
10. Crows and Ravens gaping againft the Sun.

1r. Beetles flying in the Evening.
12. Bats flying about fooner than ordinarily they do.
13. Many Flies or Gnats playing in the Sunthine at Evening.
14. The Wincopipe, a fmall red Flower, which, if it be open in the Morning, you may be fure of a fair Day to follow.

> Signs of Rain.
I. If the Sun be fiery red at his Rifing.
2. If he fhew pale and wan.
3. If red and black Clouds be about him at his Rifing, in which he is foon after hid.
4. If his Rays look dark or blue.
5. If a Cloud appear, to which, Vapours are feen to afcend.
6. When the Moon Changes near the Pleades.
7. A Circle called Halo, about the Moon.
8. If the Sun feems greater in the Eaft than commonly it doth.
9. If a black Cloud appears in the Weft at Sunfet, it will rain that Night, or the Day after.
10. If the Sun or Moon look pale, expect Rain; if fair and bright, fair Weather.

Ir. If the great Stars be only feen, and look dim.

I2. The Rainbow appearing very green the more Rain.
13. Birds wafhing themfelves.
14. The chattering of the Mag-pye.
15. Peacocks and Ducks often crying.
16. Swailows flying low.
17. The Owl crying Cbiwit often
18. The Working of the Spinner.
19. Water-Fowls (as Sea-Gulls, More-hens, \&c.) flock together, and fly from the Sea; and contrariwife, when Land-Birds fly to the Waters (fuch as Crows,

Swallows, \&3c.) and beat the Water with their Wings.
20. Many Worms appearing above the Earth.
21. The wallowing of Dogs.
22. Beafts eating greedily, and licking their Hoofs.
23. The biting of Fleas, Gnats; $\mathrm{E}_{3} \mathrm{c}$
24. Soot failing much trom Chimneys.
25. The fweating of Stones, VVanicot, and other folid Bodies.
26. A Circle round a Candle.
27. Hurts, Aches Corns, and the Limbs of antient People do allo foreflew the approach of Rain or Froft: for then they grieve them more than ufual.
28. No Dew Morning nor Evening.
29. Bells heard farther than ufual.
30. Barn-door Fowls and Gipfies picking themfelves, as if they were loufy, or had the ltch, is a fure Sign of Rain.

> Signs of Wind.
r. Red Clouds appearing in the Morning.
2. Much fhooting of the Stars.
3. Rainbow red.
4. Black Circles, with Streaks about the Sun and Moon.
5. Stars dim and fiery.
6. Autumn fair, a windy Winter.
7. Clouds flying fivift in the Air.
8. Fire burning pale, or huzzing.
9. Ravens clapping their Wings.
10. The higli flying of the Raven.

1r. Crying of Siwinè.
12. The Refounding of the Sea upon the Shore; and Murmuring of Winds in Woods and Caves, (without apparent Wind) fhew Wind to follow: For fuch Wnids breathing chiefly out of the Earth, are not Wrefently perceived, except they be pent by Wood or Water, $£ \underset{c}{ }$

Remarkable Paljages of Time fince the Creation, to the prefent Year 1734, according to the Julian Account.

Note, That the firft column fignifies the Year of the World ; the fecond, the Year before Chrift.

THE Creation of the World,
The World drowned Gen. 7,6 .
3947 The Building of Babcl (Nimrod the
Ringleader, King of Afyria fup$\left.\begin{array}{l}\text { Ringleader, King of AfJyria fup-- } \\ \text { pofed to be the firft King on Earth) } \\ \text { Gen. II, v. } 45 \text {. }\end{array}\right\}$ Ringleader, King of Afyria fup--
pofed to be the fisft King on Earth)
Gen. II, v. 45.
Heathen Gods began,
Gomorrab deftroy'd Gciz. I7, Io, Abrabam offers Ifaac, Gen. 22 Ifraelites depart out of Aigypt, Exod. I2. The Kingdom of Froy began by Dardanus, The Deftruction of Troy, London Built, Sarr, the Ift King of Ifrael anointed, The Temple of Jerusatem finifh'd. Tork built,
Rome built by Romutus,
The Monarchy of AJyria ends,
The Monarchy of Perfia began by Cyrus,
0000
1656 2291.
$1787{ }^{2006} \mid 19410$ The Perfian Monarchy ends, And the Grecian Monarchy begins,

20471900
2064 I883 The old Teftament tranflated into Greek by the 70 Interpreters,

3722	225
3902	45
3903	44

3903 44 The King of Kings began his Endlefs Reign,

Remarkable Paflages of Time continued.

Note, The firft Column fhews the Year of Chrift; the fecond Column, Years fince.

GInce the Union of God and Man! The Britons embraced the Chriftian Religion,
Conjftantine the Great affembled a Council of 318 Bifhops at Nice, which condemned Arins,
The coming of the Saxons into Britain, Singing of Pfalms brought into the Church by Damafus,
England divided into Seven Kingdoms, Beils firft ordained to affemble People together,
The coming of Mabomet the Tiurk, Lent, firft fet up in England, Organs brought into the Church, The Danes invaded England,
A Terrible Earthquake in Britain,
Tranfubftantiation brought into theChurch by the Council of Lateran
1059674

The firf Parliament of Nobility, Clergy and Commons,
Ireland reduced to England by Henry 2. Henry Fitz Alvein, Firft Mayor of London A great Dearth for Three or Four Years together, Wheat then fold for a Mark the Quarter, which before was but 12 Pence,
London Bridge finifhed with Stone,
1209524

Time's Teiefcope.

Another great Dearth; that many eat Dogs and Horfes, Guns invented, Martin Lutber, that great Reformer, born,
Printing firft in Britain by Will. Caxton, America Firft difcover'd, by Cbr . Columbus,
The Pfalms turned into Meter by Sternbold,
The Terrible Maffacre in France,
A general Earthquake,
The Bowder Plot,
The fible new cranflated,
The Terrible Miffacre in Ireland,
Edge. Hill Hight,
Nerwbury-Fight,
Quakerifm began, by George Fox,
The Blazing Comet feen December,

1315	418
1378	355

14.83	250
147	262
1492	241

A great Plague in London, whereof died 100000.

A dreadful Fire, which burnt 87 Parithes in London,
A Froft for 13 Weeks,
The Battle of the Boyne,
The high Wind in November,
Blenheim-Fight,
The Union of Scotland and England,

1552	181
1572	168
1580	153
1605	128
1611	122

1642	91
1642	91
1644	89
1680	83
	53

1665

1666	67
1684	49
1690	43
1703	30
1704	39
1707	26

A General View of the Four Parts of the World; and firjts of EUROPE.

FUrope is feated between 34 and 72 Degrees of North Latitude, from the North Cape to Cape Metapan in the Moran, equal to 2641 Miles; and from Cape St. Vincent in the Weft, to the Mouth of the River $O b y$ in the Eaft. It contains 82° of Longitude, which are 5679 Englijh Miles.

The principal Divifon of ITbe moft noted Ilands on the Cowinent of Europe.

Germany.
Mofcovia or Ruffia.
Scandiuavia comprebends Swedeland.
Norway.
\}
Denmark.
France.
Italy.
Spain.
Poland.
Pruffia.
Turkey in Europe.
Netherlands.
Greece.
Tranfilvania. Hungary.
the Coafts of Europe.
Great Britain.
Ireland.
Ille of Man.
Sicily.
Guernfey, Ierfey,
Sardinia.
Majorca, Minorca.
Azores.
Langeland.
Laland.
Iceland.
Gothland-Ile.
Cephalogna.
Candia.
Negropont, and Greenland depending on Norway.

Of A SIA.

ASIA, is fituated on the Eaft of Europe; It contains 130° of Longitude, equal to 9035° Englifh Miles. In its Latitude it poffeffes all the Temperate, the greateft part of the Torrid, and part of the Frigid Zones ; fo that it enjoys the whole $2+$ Climates; and its longeft Days are from 12 to 24 , Miles 7645 .

The Continent of Afia. T'be principal I/land on the Coafi of Afia.

Cyprus.
Rhodes
Lesboes o" Meteline.
Chios or Scio.
Samos.
Coos or Lango.
Ceylon.
The Maldive IJands.
The Sunda I/Lands.
Sumatra, Java.
Borneo.
The Jpice I/lands. Molucca-Iflands. Banda, 'Ternate. Amboyna, Ceram. Gilolo.
The Philippine-Iflands. Japonefe-Inland.
Ïbe Ladronefs Iflands.

Of AFRICA.

AFrica lies South of Europe, Weft of Afia, extending in Longitude 75 Degrees from Eaft to Weft, 5212 Miles. Its Latitude is from 36 Degrees North, to 35 South, in all 7 I , Miles 4934°

The Continent of Africa.
Barbary.
Egypt.
Bilidulgerid.
Saara.
Negro-land.
Guinea.
Nubia.
Abiflynia,
Zanguebar.
Congo.
Monotapa.
The Land of the Cafres.
Ethiopia.
Morocco.
Tripoli.
Zanfara。
Teffet.
Zanhaga.
Zaara, or the Defart.

Ilands round the Coaft of Africa.
Madera.
Canaries.
Cabo Verde.
St. Thomas.
St. Helena.
Madagaícar.
Zocolora.
Fernand-po.
Princefs Ifland St. Mathew. Malta. The Iland of Afcenfion. Teneriff is one of the Canary-IJes and the Peak of it is by fome reckoned the bigbeft Land in tbe World, the Afcent of it is $\mathbf{1 5}$ Miles, and the Perpendicular fupo pofed to be 5 Miles.

Of AMERICA.

${ }^{7}$ His Part of the Werld was difcover'd in the Year 1492 by CbriJopher Columbus, a Genoefe, Imploy'd by Ferdinand, King of Spain. The Extent of what has been difcovered of this Tract of Land, is from 55 Degrees of South Lat. to 8o Degrees of North Lat. equal to 9382 Engli/h Miles; and in Longitude 99 Degrees, which gives 6380 Engli/h Miles. The Iflbmus parting South and North America, is 139 Miles over.

Continent.
Efquimaux.
Canada.
Berfiamites.
Sagnenay.
Louifiana.
Iroguois.
Etechemins.
Acadia.
Subject to France.
$\overline{\text { New England. }}$
New York.
New E. Jerfey.
New W. Jerfey.
Penfylvania.
Maryland.
Virginia.
Carolina, Georgia. Subject to Britain.
Florida.
Groenland.
New Britain.
New Wales.
Not all conquer'd.
Mexico.
Guatimala.
Terra fyrmar Main Land.

Continent.
Peru, \exists° c.
Paragua or Rio de la Plata. Spani/b Dominions.
Brafil belonging to Portugal.
Caribana not conquer' ${ }^{\prime}$.

ISLANDS.
Newfoundland.
California.
Cuba.
Jamaica.
Hifpaniola.
Caribees.
Sotovento.
Bermudas or summer-Ifles.
Puerto rico.
Barbadoes.
Lucayo Iflands.
There are befides thefe principal Iflands about roo of lefs Note.

A Table Sowing the Length of the longest Artificial Day from One Degree of Latitude to Ninety.

Again 66 Degrees you bare 22 Hours, 20 Minutes, the Length of the longe Day; against 67 Degrees you have 24 ordinary Days, Hour, the Length of the longest Day in that Latitude; and the Length of the longer Day under ane South Pole is 197 Days, 23 Hours.

IThe Explanation of the troo following Tables, Firf, of the Tyde-Table.

IN the firtt two fimall Columns on the left Hand, you have the Moon's Age from 1 , to 30 : In the next Column, urider Portfmonth, Queenborough, \&c. you have the Time of the Moon's Southing every Day of her Age.

Example. I demand the time of High Water the firft Day of the Moon's Age at Port fmouth, Aberdeen, Gravefend, Dundee; 8 c . It's High at Portfmonth 48 Minutes paft 12 at Noon: the 16th Day (which is in the fame Line.). It's High 48 Minures paft 12 at Night. At Aberdeen 33 Minutes after 1 ; at Gravefend 18 Minutes after 2; at Dundee, 3 Minutes after 3.

The Moon Souths the 15 th Day of her Age, at 12 a-clock at Night, the 30th Day of her Age (or rather the Day that the Moon Changes. She comes to the South at 12 at Noon: It is then High.)

At Port mouth and thefe other places, in that Column; at Aberdeen, 45 Minutes after 12, 8 c .

The firtt Day of the Moon's Age it's high Water at LondonBridge 48 Minutes after 3 in the Afternoon, the r 6 th Day of herAge, 48 min. after 3 in the Morning; at Berwick, 33 Min. after 4 , and fo thro'.
It is always High in the main Ocean when the Moon comes to the South.

When the Moon is at Full (having then mof Influence) the Sea flows Higher than ordinary, which we call Spring-Tydes; it is again Spring Tydes when the Moon Changes; hes Attractive Quality being then affifted by the Sun.

Of the Table of Expence.

ONE Farthing a Day is I Peny 3 Farthings a Week; 7 Pence by the Month or 4 Weeks; by the equal Month, or 12th Part of the Year, 7 Peace 2 Farthings; by the Yeas $7 \mathrm{s} .7 \mathrm{d}$. It.

One Shilling a Day is 186.58 by the Year; in Ieap-解䟚, 6

To find the Moon's Age any Day of the Month.

SUbract the Day of New Moon from the Day propos'd; the Remainder is the Moon's Age.
For Example. The Moon Changes the 23d Day of Fan. 1734 ; I wou'd know the Moon's Age the $31 / t$ of the fame Month?

I fubtract 23 from 3r, and there remains 8 , the Moon's Age required.

But when you wou'd know the Moon's Age in the following Month before the next New Noon, you mult add the Day propofed to the remainder here.

Example 2. I wou'd know the ivioon's Age the 17th of Feb. in the Year above-mention'd? Now I add :19 to 8, the Moon's Age, the latt Day of the foregoing Month which makes 25, the Moon's Age the 17th of February.

Example 3. I wou'd alfo,know the Moon'sAge the 22d Day of the fame Month, Feb. To find which, I add 22 to 8 the Moon's Age, the laft Day of Fan. the Sum is 30 ; by which I find the Moon to be in the 3oth Day of her Age, on which Day fhe comes always to a Conjunction with the Sun.

Seek for the Day of New Moon in the Tables for that purpofe. See Page 63, $\delta^{3} c$.

A Table Jherwing the Hour and Minute of High Water any Day of the Moon's Age at the fe Places.

$\begin{array}{cc} 4 \\ \hline & 4 \\ 0 & 0 \\ 0 & 3 \\ 0 & 0 \\ & 2 \\ 3 \end{array}$	London Tinmouth Amferdam Gallicia.	Berwick Flambro Hd. Bridlington B Bourdeaux	Scarb. Q. Tide Lawrenes Severn Cork-Haven	Nencaftle Humber Falmoutb Dartmouth
	$\overline{\mathrm{H}}$. M .	H. M	H. - M.	H. M.
1\|16	$3 \quad 48$	33	6	3
217	436	21	6	1
318	24	9	54	9
419	612	57	$7 \quad 42$	$8 \quad 27$
	700	45	$8 \quad 30$	$9 \quad 15$
621	48	$8 \quad 33$	18	$10 \quad 3$
722	$8 \quad 36$	21	10	51
823	924	109	54	39
924	$10 \quad 12$	57	42	$12 \quad 27$
1025	co	45	1230	15
1126	II 4^{8}	1233	18	3
12	1236		26	51
	24		54	39
1429	12	57	42	27
15130	30	45	430	15

Time's Telefcope.
Thbe Tide-Table continued.

Time's Telefcope.
A Table of Expence.

A Table of Expence.

A Table of the Kings of Scotland, and their Reigns from Fergus I. to King James the Sixth, and Firfo of England.

$\underset{0}{Z}$	Kings Names.		$\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$	Z.	Kings Names.		
	Before Chrift.					A.	
1	4	330	25	25	Ethodius I.	132	
2	2 Feritharis	305	15	26	Satrael	194	
3	Mainus	290	29	27	Donald I.	197	
4	Dornadilla	261	28	28	Ethodius II.	218	
5	Nothatus	233	20	29	Athirco	221	
6	Reuther	213	26	30	Nathalacus	242	
	Reutha	187	14	31	Findochus	253	
8	Thereus	173	12	32	Donald II.	262	
9	Jofina	61	24	33	Donald III.	263	
10	Fennanas	137	30	34	Crathilinthus	273	
11	Durtus	107	9	35	Fincomarcus	309	4
12	Evenus I.	98	19	36	Romacus	356	
13	Gillus	79	${ }^{2}$	37	Angufianus	361	
14	Evenus II.	77	17	38	Fethelmalcus	363	
15	Ederus	60	4^{8}	39	Eugene I.	369	10
16	Evenus III.	13	6	40	Fergus II.	422	16
17	Metellanus	7	39	41	Eugene II.:	43^{8}	22
				42	Dongardus	460	
				43	Conftantine I.	465	17.
	Birth.			44	Congalus I.	4^{82}	20
				45	Goranus	501	34
18	Caracsacus	29	21	46	Eugene III.	533	33
19	Corbredus I.		18	47	Congallus II.	568	10
20	Dardanus	71	4	48	Kinnatellus	57^{8}	T
2	Corbredus II.	75	30	49	Aidanus	579	27
22	Luctacus	105	3	50	Kennethus 1.	606	$\frac{1}{3}$
23	Mogaldus	108	36	51	Eugene IV.	606	14
24	Genarus	144	18	$\mathrm{S}_{3} 1$	Eerquhardus	6201	12

The Table of the Kings of Scotland continued.

云	Kings Names.	sin		2.	Kings Reigns.		号
53	Donald IV.	632	14	81	Conftantin.IV	1000	
54	Ferquardus II.	646	12	82	Grimus	1002	Io
55	Malduinus	664	20	83	Malcolm II.	1012	30
56	Eugene V.	684	4	84	Duncan I.	1040	6
57	Eugene VI.	688	9	85	Macberh	104	
58	Amberkelerh	697	2	86	Malcolm III.	10	3
59	Eugene VII.	699	7	87	Donald VII.	109	${ }^{\frac{1}{2}}$
60	Mordacus	716	16	88	Duncan II.	109	
61	Ethfinus	732	30	89	Edgar	11	
62	Eugene VIII.	762		90	Alexander I.	1110	
63	Fergus III.	765	3	91	David I.	1123	29
64	Salvarhius	768	20	92	Malcolm IV.	1152	10
65	Achaius	788	31	93	William	1162	49
66	Congallus III.	819	5	94	Alexander II.	1214	35
68	Dongallu Alpinus	824 830	6	95	Alexander III		
69	Kennerhus II.	834	20	97	Rob. Bruce	1283	23
70	Donald V.	855	5	98	David II.	1329	2
71	Conftantin. II.	860	13	99	Ed. Baliol	1332	38
92	-	874	1	100	Robert II.	1370	9
93	Gregory	875	18	101	Robert III.	1389	4
74	Donald VI.	893	10	102	James I.	1424	3
75	ContantinliI.	903	15	103	Tames II.	1437	23
76	Malcolm Induphus	943 959	15	104	James III.	1460	29
98	Dufus	968	4	106	James V.	1489	
79	Culenus	972	5	107	H.\& M.Stuart	1514	24
	Kennethus IM	, 97	23		James Vf.		.

A Table of the Kings of England, and their Reigns, from Egbert, tibe firft King, to bis prefent Majefy King George II.

\geq	Kings Names.		$\underset{\sim}{2}$	17	Kings Names.	\%ois	-
		A.D.					
	$E^{\text {Gbert }}$	819	17	28	Henry 3:		
	Ethelw	836	19	29	Edward T	127	
3	Ethelbald	855	5	3°	Edward 2.	130	720
4	Et helbert		6	31	Edward 30.	132	$7{ }^{50}$
5	Ethelred		6	32	Richard 2.	137	
	Alfred	872	29	33	Henry 4.	139	
	Ba. she Elder	901	23	34	Henry 5.	141	
	Ethelfan	024	16	35	Henry 6.	142	39
?	Edmuna	940	6	36	Edward 4.	$1{ }^{1} 6$	1
20	Eldred	946	9	27	Edward 5:	148	
12	Edwir	955	4	38	Richard 30	148	2
12	Edgar	959	16	39	Henry 9.	148	5
13	Edw, Lharty,	175	3	4°	Henry 8.	150	37
x_{4}	Chelred 11.	278	38		Edward 6.	154	
25	Bdm. Fronfide	2015		42	Mary 1.	155	
$\pi 6$	Canute	1017	18		Elizabeth		
${ }^{1} 7$	Harold	1035	5				
18	Hardicanute	104°	2				
19	Edw. Confeffor	1042	24				
20	Haroid 2.	10661	1				
21	W. Conqueror.\|	1067					
22	W. Rutus	1087	13				
23	Henry 1.	1100	35				
24	Stephen	1135	19				
25	Henry 2.	1154	35				
26	Richard I .	1889	10				
27	John	1199	17				

KINGS and शUEENS of Great-Britain.

7	NAMES	Began to Reign	$\begin{aligned} & \text { Reign'd } \\ & \text { TMM. } \end{aligned}$
1	Ames r.	Ifoz Mar. 24	2
2	\int Charles 1.	1625 Mar. 27	22.10
3	Charles 2.	1648 Jan. 30	36
4	James 2.	1684 reb.	4
6	Willism 3.$\}$	1688	13
6	Mary 2.: 5	1688	
7	Anne	1701 Mar.	13
8	George t .	1714 Aug. 1	12.10
9	George 2.	1727 June it	
	crownd	October In	

Note, In the Beginning of the Table of the King of Scotland, the ift Column fhews the Year before Chrift, till you come to the I 7 th King, Metelanus; in the 7 th Year of whofe Reign cur Saviour was Born. Caractacus fucceeded in the 2gth Year of our Lord, Ξc.

Forgus the firft King of Scotland began his Reign 230 before Chrift, and reigned 25 Years. See the Table.

Fames IV. of Scotland married Margaret, eldeft Daughter to Henry 7 th of Enigland, Grandmother to Fames VI. who was the Son of Henry Stuart, Duke of Albany, \&c. and of Mary Stuart, Queen of Scots.

He was Crown'd King of Scotland the 2d Year of his Age; and the 35th Year of his Reign the Crown of England fell to him by the Death of Queen Elizabetb. He reign'd 23 Years in England, in all 57.

The Elector Palatine of the Rbine, (afterwards King of Bobeme) married Princefs Eliz. His eldeft Daughter, by whom he had Princefs Sopbia; his late Majeity's Mother, King George I.

After the Romans quitted England, rhe Saxons divided it into Seven Kingdoms, viz.

1. Kent, became a Kingdom in the Year of Chrift 455.
2. The Kingdom of the South Saxons contain'd Suffex and Surrey in 488.
3. The Kingdom of the Weft Saxons, contain'd Cornesall, Dervon, Dorfet, Somerfet, Wilts, Hants, Berks, Lancafter, in 522.
4. The Kingdom of the Eaft Angles, comprehended Norfolk, Suffolk, Cambridge and the Ifle of Ely, in 527.
5. The Kingdom of the Eaft Saxons, Efex, Middle-: Sex, and Part of Hertford/bire, in 527.
6. The Kingdom of Nortbumberland, York, Durbam, Cumberland and Wefmorland, in 549.
7. Kingdom of Merica containd Gloucefer, Hereford, Worcefter, Warwick, Leicefter, Rutland, Lincoln, Huntington, Bedford, Buckingbam, Oxford, Stafford, Nuttingbam, Cbefter, and the other Part of Hertfordfire, in 582.

Egbert was King of the Weft Saxons; he conquer'd the other Kings, put an end to the Heptarchy, and bees gan the Monarchy of England.

Canute the roth King, was the firf Danim "ing. 19. The Saxon Line reftored in the Perfon of Edo ward the Confeffor. 2 I W. the Conqueror, firft Nermana King. 25 The Norman and Saxon Lines united in the Perfon of Hen. 2. 33 Firft King of the Line of Lancafter, call'd the Red Rofe, Hen.IV. 36 Firlt King of the Line of York, call'd the White Rofe, Edruard 4. 39 Lancajfer and Tork united in the Perfon of Henry VII.

A Short Difcription of TIME.

And the true Way of Redeeming it.

TIME may be defined to be a certain Paffage of Eternity, comprehended between the Creation and the Day of Judgment; in which God executes his Wife Purpofes, and Eternal Decrees concerning this fublunary World: For when the Seventh Angel founds, time fhall be no more.

TIME is the Seafon in which we Mortals are to Act upon the Stage of Life, in the Sight of our allfeeing Creator! And according to our Acting, and Behaviour before Him, He will reward us with unconceivable Felicity and Bliis in his immediate Prefence ! Or punifh us with Eternal Torment and Mifery! Forever to be excluded from all hopes of recovering his Favour.

Therefore it concerns every one of us, to make the Beft of our Time, and not trifle it away upon Vanity and Toys, that will not avail us any thing, when we are call'd to give up our Accounts at the End of Time.

1.

IN Thoughts, in Deeds, in Words and Rhime, Let us redeem our precious Time,
For Time is fwift, and will not ftay;
A Minutes's ours, we cannot fay,
The 'Time that's paft, who can recall?
And future Time is not at all,
1

The prefent Time is only ours Let's manage it with all our Pow'rs.

11.

Why fhould we fpend our Time in Play,
When this may be our final Day?
Our prefent Moment flides like Sand,
The next, the Wheels of Time may ftand!
At leaft, our Time may foon be run,
And long Eternity begun;
There's no Devices in the Grave,
And no Repentance then will fave.

III.

But how prefumptuous they are,
Who fay, they have an Hour to fpare?
For Death may call that Hour hisown,
And fend them packing with a Frown.
All things befides we've more profufe,
To teach us, Time with Care to ufe:
Yet flying Time we thus mifpend,
And never think upon our End.

IV.

O heedlefs Man! Improve thy Time,
And truft not Future in thy Prime;
For 'Time's the Seafon in which we may
Procure eternal Blifs for ay;
Procure a Treafure beyond Time,
Where Thieves and Moths can never climb;
But here we may be robb'd of all,
And from the higheft Honour fall.

$$
\mathrm{V} .
$$

This may fuffice us as a Hint, What by redeeming Time is meant. We firft muft lay it out with Skill, And ftrive to do our Maker's Will : Love God, and Man, and our own Souls, Without fuch Love we're empty Fools;
And God mult have our chiefeft Love, The Father, Son, and Holy Dove.

VI.

Love each other, as Chrift lov'd us!
Give, and forgive, and bear his Crofs;
We muft e're long our Souls reftore,
To him who gave them us before;
Let's pray to Chrift to wafh them clean
In his dear Blood from ev'ry Sin,
From ev'ry Stain they gather'd here,
And thro his Merits make them clear:

VII.

We muft put on his Righteoufnefs,
And our Unworthinefs confefs;
Yet if our Love's true and fincere,
He'll give us Grace, difpell our Fear,
And at the end, eternal Joys,
All Earthly things are worthlefs Toys:
Lord, while we are here, give us Peace,
And guide us thro our mortal Race.

VIII.

Ill reckon with my God in Time,
I'll fix my Thoughts on things fublime!
What Debts I cannot pay with eafe,
In Love, in Thanks, in Songs of Praife,
My God will freely them forgive,
Thro' Chrift, who dy'd, that I might live!
I will not fet my Heart on Toys,
Which end with Time, and yield no Joys.

IX.

Help me, dear Lord, to live upright, And do my Work while I have Light, At Death refign my Soul to thee, And thro' Chrift's Merits be made free; Made a free Citizen above,
Heir of Glory, Peace, Joy and Love!
Co-heir with Chrift, our Lord and King, Let Heav'n and Earth his Praifes fing.

X.

Thefe are the happy Fruits of Time; How Glorious, and how Sublime! Who would not then live holy here, And their Short Courfe with Wifdom fteer? But as for me, I'll praife the Lord; I'll fear his Threats, and truft his Word; There's time enough, and none to fpare. For ev'ry Purpofe and Affair.

$$
E I \mathbb{N} I
$$

